DOI QR코드

DOI QR Code

Changes in Drug Elution Concentration and Physical Characteristics of Soft Contact Lenses Depending on the Initiator and Crosslinker

개시제와 교차결합제 농도의 변화에 따른 소프트콘택트렌즈의 물리적 성질과 약물용출 농도의 변화

  • Park, Hyun-Ju (Dept. of Optometry and Vision Science, Catholic University of Daegu) ;
  • Lee, Hyun Mee (Dept. of Optometry and Vision Science, Catholic University of Daegu)
  • 박현주 (대구가톨릭대학교 안경광학과) ;
  • 이현미 (대구가톨릭대학교 안경광학과)
  • Received : 2014.02.06
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

Purpose: The material properties of contact lenses were measured by varying the amounts of an initiator and a cross-linking agent that are the basis for the manufacture of contact lenses, and the drug delivery effects depending on the material properties of contact lenses were compared. Methods: Contact lens samples were manufactured using HEMA by varying the concentration of the cross-linking agent and the initiator. To investigate the changes in physical characteristics depending on the material properties, the results of the experiments on the amount of drug elution, water content, refractive index, and the amount of protein adsorption were compared. Results: For the contact lenses manufactured by varying the amount of the initiator, the water content hardly changed, and the refractive index also hardly changed. The amount of drug elution was not much affected by the changes in the initiator, but the amount of elution increased as the water content increased. The amount of protein adsorption was hardly affected by the changes in the initiator, but the amount of adsorption increased as the water content decreased. Conclusions: The changes in the properties were hardly affected by the changes in the amount of the initiator, but were significantly affected by the changes in the amount of the cross-linking agent. As the amount of the cross-linking agent increased, the water content decreased, while the refractive index increased. Also, when the water content increased, the amount of drug elution increased, while the amount of protein adsorption decreased.

목적: 개시제와 교차결합제의 농도에 따른 소프트콘택트렌즈의 재질을 변화시켜서 재질변화에 대한 물리적 특성 및 약물의 용출량 및 속도를 비교하였다. 방법: HEMA에 개시제인 AIBN과 교차결합제인 EGDMA의 농도을 변화시켜서 콘택트렌즈를 제작하였다. 항균물질인 노플록사신(norfloxacin)은 고분자 중합 시 0.1% 농도로 단량체와 함께 혼합하였다. 재질변화에 따른 물리적 성질 변화를 확인하기 위해 약물용출 농도, 함수율, 굴절률, 단백질 흡착량 등에 대한 실험을 통하여 비교하였으며, 통계분석을 통해 유의성을 확인하였다. 결과: 개시제의 농도을 변화 시킨 콘택트렌즈는 함수율의 변화가 거의 없으며, 굴절률의 값에도 별 변화가 없었다. 교차결합제 농도이 증가하면 함수율이 낮아지고 굴절률이 높아졌다. 약물용출의 농도를 살펴보면 개시제의 변화에 의해서는 많은 변화를 보이지 않았으며, 함수율이 높을수록 용출되는 농도가 증가하였다. 단백질 흡착양은 개시제에 의한 변화는 거의 없었으며 함수율이 낮을수록 흡착되는 양이 증가하였다. 결론: 개시제의 농도에 대한 변화는 특성 변화에 영향력이 거의 없었으며, 교차결합제 농도에 따라서는 많은 변화를 보였다. 교차결합제의 농도가 증가할수록 함수율은 감소하며 굴절률은 증가하였다. 또한 함수율의 증가에 따라 약물이 많이 용출되었으며 단백질의 흡착량은 감소되었다.

Keywords

References

  1. Grobe G, Kunzler J, Seelye D. Silicone hydrogels for contact lens applications. Polymeric Materials Science and Engineering 1999;80:108-109.
  2. Kunzler J. Silicone-based hydrogels for contact lens applications. Contact Lens Spectrum 1999;14(8):9-11.
  3. Steffen R, Schnider C. A next generation silicone hydrogel lens for daily wear. Part 1 - Material properties. Optician 2004;227(5954):23-25.
  4. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117-118. https://doi.org/10.1038/185117a0
  5. Lim F, Sun AM. Micro encapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908-910. https://doi.org/10.1126/science.6776628
  6. Hoffman AS, Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54(1):3-12. https://doi.org/10.1016/S0169-409X(01)00239-3
  7. Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionano technology. AIChE Journal. 2003;49(12): 2990-3006. https://doi.org/10.1002/aic.690491202
  8. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345-1360. https://doi.org/10.1002/adma.200501612
  9. Chaterji S, Kwon IK, Park KN. Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci. 2007;32:1083-1122. https://doi.org/10.1016/j.progpolymsci.2007.05.018
  10. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10): 569-579. https://doi.org/10.1016/S1359-6446(02)02255-9
  11. Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofacial Res. 2005;8(3):150-161. https://doi.org/10.1111/j.1601-6343.2005.00335.x
  12. Lin C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58:1379-1408. https://doi.org/10.1016/j.addr.2006.09.004
  13. Piras AM, Chiellini F, Fiumi C, Bartoli C, Chiellini E, Fiorentino B et al. New biocompatible nanoparticle delivery system for the release of fibrinolytic drugs. Int J Pharm. 2008;357(1-2):260-271. https://doi.org/10.1016/j.ijpharm.2008.01.035
  14. Tranoudis I, Efron N. Parameter stability of soft contact lenses made from different materials. Cont Lens Anterior Eye, 2004;27(3):115-131. https://doi.org/10.1016/j.clae.2004.03.001
  15. He H, Cao X, Lee LJ. Design of a novel hydrogel-based intelligent system for controlled drug release. J Control Release, 2004;95(3):391-402. https://doi.org/10.1016/j.jconrel.2003.12.004
  16. Ciolino JB, Hoare TR. Iwata NG, Behlau I, Dohlman CH, Langer R, et al. A drug-eluting contact lens. Invest Ophthalmol Vis Sci. 2009;50(7):3346-3352. https://doi.org/10.1167/iovs.08-2826
  17. Peng CC, Kim J, Chauhan A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing Vitamin E diffusion barriers. Biomaterials. 2010;31(14): 4032-4047. https://doi.org/10.1016/j.biomaterials.2010.01.113
  18. Nelson JM, Chiller TM, Powers JH, Angulo FJ. Fluoroquinolone- resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin Infect Dis. 2007;44(7):977-980. https://doi.org/10.1086/512369
  19. Kawahara S. Chemotherapeutic agents under study. Nihon Rinsho. 1998;56(12):3096-3099.
  20. Cook AD, Sagers RD, Pitt WG. Bacterial adhesion to protein- coated hydrogels. J Biomater Appl. 1993;8:72-89. https://doi.org/10.1177/088532829300800105
  21. Portoles M, Refojo MF. The role of tear deposits on hydrogel contact lenses induced bacterial keratitus. Adv Exp Med Biol. 1994;350:421-426. https://doi.org/10.1007/978-1-4615-2417-5_73
  22. Boles SF, Refojo MF, Leong FL. Attachment of Psedomonas to human-worn, disposable etafilcon a contact lenses. Cornea. 1992;11:47-52. https://doi.org/10.1097/00003226-199201000-00008
  23. Fleiszig SM., Efron N. Microbial flora in eyes of current and former contact lens wearers. J Clin Microbiol. 1992;30(5): 1156-1161.
  24. Sariri R. Protein interaction with hydrogel contact lenses. J Appl Biomater & Biomech. 2004;2(1):1-19.
  25. Luensmann D, Jones L. Albumin adsorption to contact lens materials: A review. Cont Lens Anterior Eye. 2008; 31(4):179-187. https://doi.org/10.1016/j.clae.2008.05.004
  26. Xinming Li, Yingde C, Lloyd AW, Mikhalovsky SV, Sandeman SR, Howel CA, et al. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: A review. Cont Lens Anterior Eye 2008;31(2):57-64. https://doi.org/10.1016/j.clae.2007.09.002
  27. Garrett Q, Laycock B, Garett RW. Hydrogel lens monomer constituents modulate protein sorption. Invest Ophthalmol Vis Sci. 2000;41(7):1687-1695.
  28. Junpo HE, Hongdong Z, Li L, Chengming L, Jizhuang C, Yuliang Y. Effects of initiator homolysis rate constant on kinetics and chain length distribution in living free-radical polymerization. Polymer J. 1999;31(7):585-589. https://doi.org/10.1295/polymj.31.585
  29. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissues. Adv Drug Deliv Rev 2003:55(3);329-347. https://doi.org/10.1016/S0169-409X(02)00228-4
  30. Oh KT, Bronich TK, Kabanov AV. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J Control Release. 2004:94;411-422. https://doi.org/10.1016/j.jconrel.2003.10.018
  31. Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofacial Res. 2005;8(3):150-161. https://doi.org/10.1111/j.1601-6343.2005.00335.x
  32. Lin C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58(12-13):1379-1408. https://doi.org/10.1016/j.addr.2006.09.004
  33. Kim DH, Kim TH, Sung AY. Study on changes in the physical properties of hydrogel lens depending on ethylene glycol dimethacrylate. J Kor Chem Soc. 2012;56(1): 169-174. https://doi.org/10.5012/jkcs.2012.56.1.169
  34. Kim TH, Ye KH, Sung AY. Physical properties of styrene copolymer and contact lens pplication. J Kor Chem Soc. 2009:53(6);755-760. https://doi.org/10.5012/jkcs.2009.53.6.755
  35. Kim TH, Cho SA, Sung AY. Study on physical of colored hydrogel lens using aniline groups. J Kor Chem Soc. 2011:55(2);308-312. https://doi.org/10.5012/jkcs.2011.55.2.308
  36. Kim SY. Research trends on polymeric hydrogels for tisuue engineering applications. Tissue Engineering Regenerative Medicine. 2008;5(1):14-25.

Cited by

  1. Physical Properties of the Hydrogel Using Alginate vol.20, pp.4, 2015, https://doi.org/10.14479/jkoos.2015.20.4.463
  2. Antioxidant Activity of Hydrogel Lens Applied with Gallic Acid vol.22, pp.2, 2020, https://doi.org/10.17337/jmbi.2020.22.2.135
  3. Manufacturing of Contact Lenses Containing a Natural Antibacterial Component and Characteristics of its Release vol.26, pp.3, 2014, https://doi.org/10.14479/jkoos.2021.26.3.191