DOI QR코드

DOI QR Code

Rapid Assembly and Cloning of Zinc Finger Proteins with Multiple Finger Modules

  • Received : 2014.03.14
  • Accepted : 2014.03.24
  • Published : 2014.07.20

Abstract

Keywords

Experimental

PCR Amplification. For convenience and efficiency of the vector PCR, the vector template DNA was constructed into pJHU-1 vector (a gift from professor Srinivasan Chandrasegaran at department of Environmental Health Sciences of the Johns Hopkins University), a 2-kb minimal size cloning vector. Two ZF template oligonucleotides and all PCR primers were purchased from Bioneer Cooperation. For a typical PCR reaction, the reaction volume was 50 μL containing 5 μL of the 10X Pfu buffer, 4 μL of dNTP (2.5 mM each), 1 μL of 10 μM primer mix, 1 μL of 50 ng/μL template DNA and 1 μL of Pfu polymerase (5 U/μL) (Labo Pass). For vector PCR, the reaction mixture was incubated at 94 ℃ 5 min, and 30 cycles of denaturation (94 ℃ for 1 min), annealing (57 ℃ for 1 min) and extension (72 ℃ for 4 min) were performed. And, the reaction mixture was kept at 72 ℃ for 10 min. For the ZF PCR, the reaction condition was same except the extension time, which was 1 min. After PCR, reactions were subjected to DpnI digestion at 37 ℃ for 4 h to remove template plasmid DNAs, if necessary. Each PCR product was subjected to electrophoresis and size-checked in agarose gel.

Gibson Assembly and Cloning. Vector DNA fragments were gel-isolated by MEGA quick-spinTM total kit (iNtRON). The gel-isolated vector fragments and two (or three) PCR products of ZF modules for 3 (or 4)-finger ZFP construction. For the Gibson assembly, Gibson AssemblyTM master mix was used (New England Biolab). In this assay, the reaction volume was 20 μL containing 10 μL of the 2X Gibson Assembly Master Mix and PCR-amplified DNA fragments, 0.2 pmole of vector fragment and 0.6 pmole of each ZF module fragment. The reaction was incubated for 1 h at 50 °C. After incubation, the DNA was used for transformation by electroporation. For expression of CCR5-L and -R ZFN, the constructed ZFP genes was transferred into pET28a vector (Novagen) using NcoI and HindIII sites.

DNA Cleavage Activity Assay CCR5-L-ZFN and CCR5- R-ZFN cloning vectors were used for in-vitro translation reactions by TNT® T7 Quick-Coupled Transcription/Translation System (Promega). In this assay, reaction volumes were 20 μL containing 2 μL of the 10X reaction buffer (50 mM potassium acetate, 20 mM Tris-acetate, pH 7.9, 10 mM magnesium acetate, 1 mM DTT), 500 ng of the ScaI-linearized target DNA, and 2 μL of each expressed either CCR5-L or -L- ZFN. The reaction was incubated for 12 h at 22 ℃. After the DNA cleavage, 10 μg of RNase A (GENE ALL) was added into the reactions and incubated for 30 min at 22 ℃ to remove RNAs. For removal of proteins in the reaction, 10 μg of Protease K (New England Biolab) was added to the samples and incubated for 2 h at 55 ℃. The reaction was subjected to agarose gel electrophoresis and stained with ethidium bromide. And DNAs were visualized under UV.

Supporting Information. Supplementary data associated with this article can be found in the online version.

References

  1. Bateman, A.; Coin, L.; Durbin, R.; Finn, R. D.; Hollich, V.; Griffiths-Jones, S.; Khanna, A.; Marshall, M.; Moxon, S.; Sonnhammer, E. L.; Studholme, D. J.; Yeats, C.; Eddy, S. R. Nucleic Acids Res. 2002, 30, 276-280. https://doi.org/10.1093/nar/30.1.276
  2. Klug, A. Annu. Rev. Biochem. 2010, 79, 213-231. https://doi.org/10.1146/annurev-biochem-010909-095056
  3. Berg J. M. Proc. Natl. Acad. Sci. USA 1988, 85, 99-102. https://doi.org/10.1073/pnas.85.1.99
  4. Lee, M. S.; Gippert, G. P.; Soman, K. V.; Case, D. A.; Wright, P. E. Science 1989, 245, 635-637. https://doi.org/10.1126/science.2503871
  5. Pavletich, N. P.; Pabo, C. O. Science 1991, 252, 809-817. https://doi.org/10.1126/science.2028256
  6. Nakaseko, Y.; Neuhaus, D.; Klug, A.; Rhodes, D. J. Mol. Biol. 1992, 228, 619-636. https://doi.org/10.1016/0022-2836(92)90845-B
  7. Neuhaus, D.; Nakaseko, Y.; Schwabe, J. W.; Klug, A. J. Mol. Biol. 1992, 228, 637-651. https://doi.org/10.1016/0022-2836(92)90846-C
  8. Fairall, L.; Schwabe, J. W.; Chapman, L.; Finch, J. T.; Rhodes, D. Nature 1993, 366, 483-487. https://doi.org/10.1038/366483a0
  9. Desjarlais, J. R.; Berg, J. M. Proc. Natl. Acad. Sci. USA 1993, 90, 2256-2260. https://doi.org/10.1073/pnas.90.6.2256
  10. Rebar, E. J.; Pabo, C. O. Science 1994, 263, 671-673. https://doi.org/10.1126/science.8303274
  11. Jamieson, A. C.; Kim, S. H.; Wells, J. A. Biochemistry 1994, 33, 5689-5695. https://doi.org/10.1021/bi00185a004
  12. Choo, Y.; Klug, A. Proc. Natl. Acad. Sci. USA 1994, 91, 11168-11172. https://doi.org/10.1073/pnas.91.23.11168
  13. Wu, H.; Yang, W. P.; Barbas, C. F. 3rd. Proc. Natl. Acad. Sci. USA 1995, 92, 344-348. https://doi.org/10.1073/pnas.92.2.344
  14. Mandell, J. G.; Barbas, C. F. 3rd. Nucleic Acids Res. 2006, 34, W516-W523. https://doi.org/10.1093/nar/gkl209
  15. Choo, Y.; Sanchez-Garcia, I.; Klug, A. Nature 1994, 372, 642-645. https://doi.org/10.1038/372642a0
  16. Blancafort, P.; Chen, E. I.; Gonzalez, B.; Bergquist, S.; Zijlstra, A.; Guthy, D.; Brachat, A.; Brakenhoff, R. H.; Quigley, J. P.; Erdmann, D.; Barbas, C. F. 3rd. Proc. Natl. Acad. Sci. USA 2005, 102, 11716-11721. https://doi.org/10.1073/pnas.0501162102
  17. Lee, D. K.; Seol, W.; Kim, J. S. Curr. Top. Med. Chem. 2003, 3, 645-657. https://doi.org/10.2174/1568026033452384
  18. Kim, Y.-G.; Cha, J.; Chandrasegaran, S. Proc. Natl. Acad. Sci. USA 1996, 93, 1156-1160. https://doi.org/10.1073/pnas.93.3.1156
  19. Tan, W.; Zhu, K.; Segal, D. J.; Barbas, C. F. 3rd.; Chow, S. A. J. Virol. 2004, 78, 1301-1313. https://doi.org/10.1128/JVI.78.3.1301-1313.2004
  20. Gordley, R. M.; Smith, J. D.; Graslund, T.; Barbas, C. F. 3rd. J. Mol. Biol. 2007, 367, 802-813. https://doi.org/10.1016/j.jmb.2007.01.017
  21. Carroll, D.; Morton, J. J.; Beumer, K. J.; Segal, D. J. Nat. Protoc. 2006, 1, 1329-1341. https://doi.org/10.1038/nprot.2006.231
  22. Wright, D. A.; Thibodeau-Beganny, S.; Sander, J. D.; Winfrey, R. J.; Hirsh, A. S.; Eichtinger, M.; Fu, F.; Porteus, M. H.; Dobbs, D.; Voytas, D. F.; Joung, J. K. Nat. Protoc. 2006, 1, 1637-1652. https://doi.org/10.1038/nprot.2006.259
  23. Gonzalez, B.; Schwimmer, L. J.; Fuller, R. P.; Ye, Y.; Asawapornmongkol, L.; Barbas, C. F. 3rd. Nat. Protoc. 2010, 5, 791-810. https://doi.org/10.1038/nprot.2010.34
  24. Fujii, W.; Kano, K.; Sugiura, K.; Naito, K. PLoS One 2013, 8, e59801. https://doi.org/10.1371/journal.pone.0059801
  25. Lombardo, A.; Genovese, P.; Beausejour, C. M.; Colleoni, S.; Lee, Y. L.; Kim, K. A.; Ando, D.; Urnov, F. D.; Galli, C.; Gregory, P. D.; Holmes, M. C.; Naldini, L. Nat. Biotechnol. 2007, 25, 1298-1306. https://doi.org/10.1038/nbt1353
  26. Gibson, D. G.; Young, L.; Chuang, R. Y.; Venter, J. C.; Hutchison, C. A. 3rd.; Smith, H. Nat. Methods 2009, 6, 343-345. https://doi.org/10.1038/nmeth.1318
  27. Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 2223-2311. https://doi.org/10.1016/S0040-4020(01)88752-4