DOI QR코드

DOI QR Code

Thioether Amide Based-Fluorescent Chemosensors for Pd2+ with High Selectivity over Pd0

  • Received : 2014.03.04
  • Accepted : 2014.03.19
  • Published : 2014.07.20

Abstract

Keywords

Experimental

Chemicals. All reagents used in this work were purchased from Sigma-Aldrich Chemical Co. and were used without further purification. Pd2+ ion solution was prepared form the respective chloride anion and DMSO, other metal ion solutions solutions were prepared from the respective perchlorate anions and deionized water.

Synthesis of N-(2-(Methylthio)ethyl)pyrene-1-carboxamide (1). To a solution of 1-pyrenecarboxylic acid (0.25 g, 1.0 mmol) in CH2Cl2 (20 mL), were added oxalyl chloride (0.38 g, 3.0 mmol) and 2 drops of DMF. After stirring for 3 h at room temperature, the solvent was removed under reduced pressure. The resulting solid was dissolved in CH2Cl2 (20 mL), and then TEA (2.0 g, 20 mmol) and 1-(methylthio) ethylamine (0.14 g, 1.5 mmol) were added. After stirring for 1 h at room temperature, the solvent was removed under reduced pressure. The product was purified by silica gel chromatography with EA:Hex (1:1) as eluent. The solid product was recrystallized from MeOH to give a white solid (0.20 g, 63%): mp 161-162 °C; 1H NMR (600 MHz, CDCl3) δ 2.20 (s, 3H), 2.88 (t, 2H), 3.84 (q, 2H), 6.56 (br s, 1H), 8.03-8.23 (m, 8H), 8.61 (d, 1H); 13C NMR (150 MHz, CDCl3) δ 15.06, 34.06, 38.28, 124.34, 124.40, 124.41, 124.60, 124.78, 125.74, 125.82, 126.33, 127.11, 128.62, 128.69, 128.73, 130.70, 130.83, 131.16, 132.60, 169.98. HRMS (ESI) m/z calcd for C20H18NOS [M + H]+ 320.1109; found, 320.1100.

Synthesis of N-(2-(Methylthio)ethyl)-2-(pyren-1-yl)- acetamide (2). N-hydroxysuccinimide (0.14 g, 1.2 mol) and DCC (0.25 g, 1.2 mmol) were added to a solution of 1- pyreneacetic acid (0.26 g, 1.0 mmol) in 1,4-dioxane (20 mL). The solution was stirred for 20 h at room temperature. Ethyl acetate (30 mL) was added, and the resulting slurry was filtered. The filtrate was concentrated, the resulting solid was dissolved in 1,4-dioxane (20 mL), and 1-(methylthio) ethylamine (0.14 g, 1.5 mmol) was added. After stirring for 1 h at room temperature, the solvent was removed under reduced pressure. The product was purified by silica gel chromatography eluting with EA:CH2Cl2 (1:2) to give a yellow solid (0.18 g, 55%): mp 140-141 °C; 1H NMR (600 MHz, CDCl3) δ 1.85 (s, 3H), 2.43 (t, 2H), 3.33 (q, 2H), 4.31 (s, 2H), 5.64 (br s, 1H), 7.92-8.22 (m, 9H); 13C NMR (150 MHz, CDCl3) δ 14.94, 33.58, 38.10, 42.09, 122.97, 124.63, 125.13, 125.20, 125.43, 125.54, 126.25, 127.32, 127.63, 128.25, 128.44, 128.54, 129.60, 130.80, 131.11, 131.29, 171.02. HRMS (ESI) m/z calcd for C21H20NOS [M + H]+ 334.1266; found, 334.1255.

References

  1. (a) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177. https://doi.org/10.1021/cr100346g
  2. (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442. https://doi.org/10.1002/anie.200500368
  3. (c) Shu, J.; Grandjean, B. P. A.; Neste, A. V.; Kaliaguine, S. Can. J. Chem. Eng. 1991, 69, 1036. https://doi.org/10.1002/cjce.5450690503
  4. (d) Rushforth, R. Platinum Metals Rev. 2004, 48, 30.
  5. (e) MacQuarrie, S.; Horton, J. H.; Barnes, J.; McEleney, K.; Loock, H.-P.; Crudden, C. M. Angew. Chem. Int. Ed. 2008, 47, 3279. https://doi.org/10.1002/anie.200800153
  6. (f) Kohler, K.; Kleist, W.; Prockl, S. S. Inorg. Chem. 2007, 46, 1876. https://doi.org/10.1021/ic061907m
  7. (g) Crudden, C. M.; Sateesh, M.; Lewis, R. J. Am. Chem. Soc. 2005, 127, 10045. https://doi.org/10.1021/ja0430954
  8. (a) King, A. O.; Yasuda, N. Topics Organomet. Chem. 2004, 6, 205.
  9. (b) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889. https://doi.org/10.1002/adsc.200404071
  10. (a) Wataha, J. C.; Hanks, C. T. J. Oral Rehabil. 1996, 23, 309. https://doi.org/10.1111/j.1365-2842.1996.tb00858.x
  11. (b) Palladium, Environmental Health Criteria Series 226, International Programme on Chemical Safety, World Health Organization, Geneva, 2002
  12. (c) Kielhorn, J.; Melber, C.; Keller, D.; Mangelsdorf, I. Int. J. Hyg. Environ. Health 2002, 205, 417. https://doi.org/10.1078/1438-4639-00180
  13. (a) Dimitrova, B.; Benkhedda, K.; Ivanova, E.; Adams, F. J. Anal. At. Spectrom. 2004, 19, 1394. https://doi.org/10.1039/b407546n
  14. (b) Locatelli, C.; Melucci, D.; Torsi, G. Anal. Bioanal. Chem. 2005, 382, 1567. https://doi.org/10.1007/s00216-005-3356-4
  15. (c) Meel, K. V.; Smekens, A.; Behets, M.; Kazandjian, P.; Grieken, R. V. Anal. Chem. 2007, 79, 6383. https://doi.org/10.1021/ac070815r
  16. (a) Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280. https://doi.org/10.1021/cr100154p
  17. (b) Jeong, Y.; Yoon, J. Inorg. Chim. Acta 2012, 381, 2. https://doi.org/10.1016/j.ica.2011.09.011
  18. (c) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  19. (a) Balamurugan, R.; Chien, C.-C.; Wu, K.-M.; Chiu, Y.-H.; Liu, J.-H. Analyst 2013, 138, 1564. https://doi.org/10.1039/c3an36758d
  20. (b) Cai, S.; Lu, Y.; He, S.; Wei, F.; Zhao, L.; Zeng, X. Chem. Commun. 2013, 822.
  21. (c) Goswami, S.; Sen, D.; Das, N. K.; Fun, H.-K.; Quah, C. K. Chem. Commun. 2011, 9101.
  22. (d) Li, H.; Fan, J.; Du, J.; Guo, K.; Sun, S.; Liu, X.; Peng, X. Chem. Commun. 2010, 1079.
  23. (e) Yu, S. Y.; Rhee, H.-W.; Hong, J.-I. Tetrahedron Lett. 2011, 52, 1512. https://doi.org/10.1016/j.tetlet.2011.01.118
  24. (f) Zhou, Y.; Zhang, J.; Zhou, H.; Zhang, Q.; Ma, T.; Niu, J. Sens. Actuator B-Chem. 2012, 171-172, 508. https://doi.org/10.1016/j.snb.2012.05.021
  25. (g) Li, H.; Fan, J.; Hu, M.; Cheng, G.; Zhou, D.; Wu, T.; Song, F.; Sun, S.; Duan, C.; Peng, X. Chem.-Eur. J. 2012, 18, 12242. https://doi.org/10.1002/chem.201201998
  26. (h) Jun, M. E.; Ahn, K. H. Org. Lett. 2010, 12, 2790. https://doi.org/10.1021/ol100905g
  27. (i) Wei, G.; Wang, L.; Jiao, J.; Hou, J.; Cheng, Y.; Zhu, C. Tetrahedron Lett. 2012, 53, 3459. https://doi.org/10.1016/j.tetlet.2012.04.108
  28. (j) Inamoto, K.; Campbell, L. D.; Doi, T.; Koide, K. Tetrahedron Lett. 2012, 53, 3147. https://doi.org/10.1016/j.tetlet.2012.04.043
  29. (k) Garner, A. L.; Song, F.; Koide, K. J. Am. Chem. Soc. 2009, 131, 5163. https://doi.org/10.1021/ja808385a
  30. (l) Chen, H.; Lin, W.; Yuan, L. Org. Biomol. Chem. 2013, 11, 1938. https://doi.org/10.1039/c3ob27507h
  31. (m) Ren, W. X.; Pradhan, T.; Yang, Z.; Cao, Q.-Y.; Kim, J. S. Sens. Actuator B-Chem. 2012, 171-172, 1277. https://doi.org/10.1016/j.snb.2012.05.081
  32. (n) Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, W.; Liu, R. Org. Lett. 2011, 13, 4922. https://doi.org/10.1021/ol202003j
  33. (o) Liu, B.; Wang, H.; Wang, T.; Bao, Y.; Du, F.; Tian, J.; Li, Q.; Bai, R. Chem. Commun. 2012, 2867.
  34. (p) Bu, X.; Koide, K.; Carder, E. J.; Welch, C. J. Org. Process Res. Dev. 2013, 17, 108. https://doi.org/10.1021/op3003008
  35. Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, J. S. Chem. Soc. Rev. 2011, 40, 3416. https://doi.org/10.1039/c1cs15028f
  36. (a) Duan, L.; Xu, Y.; Qian, X. Chem. Commun. 2008, 6339.
  37. (b) Liu, B.; Bao, Y.; Du, F.; Wang, H.; Tian, J.; Bai, R. Chem. Commun. 2011, 1731.
  38. (c) Schwarze, T.; Dosche, C.; Flehr, R.; Klamroth, T.; Lohmannsroben, H.-G.; Saalfrank, P.; Cleve, E.; Buschmann, H.-J.; Holdt, H.-J. Chem. Commun. 2010, 2034.
  39. (d) Mukherjee, S.; Chowdhury, S.; Paul, A. K.; Banerjee, R. J. Lumines. 2011, 131, 2342. https://doi.org/10.1016/j.jlumin.2011.05.001
  40. (a) Zhu, L.; Kostic, N. M. Inorg. Chim. Acta 2002, 339, 104. https://doi.org/10.1016/S0020-1693(02)00928-3
  41. (b) Qiao, F.; Hu, J.; Zhu, H.; Luo, X.; Zhu, L.; Zhu, D. Polyhedron 1999, 18, 1629. https://doi.org/10.1016/S0277-5387(99)00037-6
  42. (c) Zhu, L.; Bakhtiar, R.; Kostic, N. M. J. Biol. Inorg. Chem. 1998, 3, 383. https://doi.org/10.1007/s007750050248
  43. (d) Milovic, N. M.; Dutca, L.-M.; Kostic, N. M. Inorg. Chem. 2003, 42, 4036. https://doi.org/10.1021/ic026280w
  44. (e) Milovic, N. M.; Kostic, N. M. J. Am. Chem. Soc. 2003, 125, 781. https://doi.org/10.1021/ja027408b
  45. (f) Yeguas, V.; Campomanes, P.; Lopez, R.; Diaz, N.; Suarez, D. J. Phys. Chem. B 2010, 114, 8525. https://doi.org/10.1021/jp101870j
  46. (a) Rae, M.; Fedorov, A.; Berberan-Santos, M. N. J. Chem. Phys. 2003, 119, 2223. https://doi.org/10.1063/1.1580806
  47. (b) Zhu, J.; Li, J.-J.; Zhao, J.-W. Plasmonics 2012, 7, 201. https://doi.org/10.1007/s11468-011-9294-4
  48. (c) Zhu, P.; Clamme, J.-P.; Deniz, A. A. Biophys. J. 2005, 89, L37. https://doi.org/10.1529/biophysj.105.071027

Cited by

  1. Fluorometric imaging methods for palladium and platinum and the use of palladium for imaging biomolecules vol.44, pp.14, 2015, https://doi.org/10.1039/C4CS00323C