DOI QR코드

DOI QR Code

무선 센서 네트워크에서 효율적인 에너지 사용을 위한 클러스터링 알고리즘

Clustering Algorithm for Efficient Energy Consumption in Wireless Sensor Networks

  • 나성원 (충북대학교 컴퓨터공학과) ;
  • 최승권 (충북대학교 컴퓨터공학과) ;
  • 이태우 (충북대학교 컴퓨터공학과) ;
  • 조용환 (충북대학교 컴퓨터공학과)
  • Na, Sung-Won (Dept. of Computer Engineering, Chungbuk National University) ;
  • Choi, Seung-Kwon (Dept. of Computer Engineering, Chungbuk National University) ;
  • Lee, Tae-Woo (Dept. of Computer Engineering, Chungbuk National University) ;
  • Cho, Yong-Hwan (Dept. of Computer Engineering, Chungbuk National University)
  • 투고 : 2014.04.16
  • 심사 : 2014.05.21
  • 발행 : 2014.06.30

초록

최근 무선 센서 네트워크(WSN)이 침입 탐지와 생태, 환경, 대기, 산업, 교통, 화재 감시 등에 다양하게 적용되어 사용되고 있다. 본 논문에서는 에너지 효율적인 클러스터링 알고리즘을 제안한다. 제안 알고리즘은 수신전력을 바탕으로 하여 최적위치의 클러스터헤드를 선출하고 이를 통해 균일한 클러스터사이즈를 가지도록 한다. 또한 최대 깊이가 제한된 MST를 이용한 라우팅 트리를 구성하고 멀티 홉 전송을 통해 센서 노드의 위치에 관계없이 균일한 에너지 소모를 유도하도록 하였다. 이를 통해 제안 알고리즘은 기존의 LEACH나 HEED에 비해 노드의 에너지 소모를 감소시키고 균등한 에너지 소모를 유도하여 네트워크 수명을 증대시킬 수 있다. 시뮬레이션 결과 제안 알고리즘이 공평한 에너지 소모를 통해 네트워크 수명을 증대시킬 수 있음을 확인하였다.

Recently, wireless sensor networks(WSNs) are widely used for intrusion detection and ecology, environment, atmosphere, industry, traffic, fire monitoring. In this paper, an energy efficient clustering algorithm is proposed. The proposed algorithm forms clusters uniformly by selecting cluster head that optimally located based on receiving power. Besides, proposed algorithm can induce uniform energy consumption regardless of location of nodes by multi-hop transmission and MST formation with limited maximum depth. Through the above, proposed algorithm elongates network life time, reduces energy consumption of nodes and induces fair energy consumption compared to conventional LEACH and HEED. The results of simulation show that the proposed clustering algorithm elongates network life time through fair energy consumption.

키워드

참고문헌

  1. Ehsan Ullah Warriach, Tuan Anh Nguyen, Marco Aiello, Kenji Tei, "A Hybrid Fault Detection Approach for Context-aware Wireless Sensor Networks," 2012 IEEE 9th International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 281-289, Oct. 2012.
  2. Rathna. R, Sivasubramanian. A, "Improving Energy Efficiency in Wireless Sensor Networks Through Scheduling and Routing," International Journal Of Advanced Smart Sensor Network Systems(IJASSN), Vol 2, No.1, pp. 21-27, Jan. 2012. https://doi.org/10.5121/ijassn.2012.2103
  3. Stefano Savazzi, Sergio Guardiano, Umberto Spagnolini, "Wireless Sensor Network Modeling and Deployment Challenges in Oil and Gas Refinery Plants," International Journal of Distributed Sensor Networks, Volume 2013, 2013.
  4. W. B. Heinzelman, A. P. Chandrakasan, H. Balakrishnan, "Energy- Efficient Communication Protocol for Wireless Microsensor Networks," Proceedings of the 33rd Hawaii International Conference on System Sciences, Vol. 8, 2000.
  5. Mohamad Ramazany, Zynolabedin Moussavi, " Localization of Nodes in Wireless Sensor Networks by MDV-Hop Algorithm," ARPN Journal of Systems and Software, Vol.2, No.5, May 2012.
  6. O. Younis, S. Fahmy, "Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient Approach," IEEE INFOCOM 2004, 2004.
  7. V. Mhatre, and C. Rosenberg, "Design guidelines for wireless sensor networks: communication, clustering and aggregation," Ad Hoc Networks Journal, Elsevier Science, Vol. 2, No. 1, pp45-63, 2004. https://doi.org/10.1016/S1570-8705(03)00047-7

피인용 문헌

  1. 무선 센서네트워크에서 다종 센서(Different Types of Sensors)가 미치는 영향에 대한 분석 vol.19, pp.9, 2014, https://doi.org/10.9708/jksci.2014.19.9.075
  2. Modeling and Simulation of LEACH Protocol to Analyze DEVS Kernel-models in Sensor Networks vol.25, pp.4, 2020, https://doi.org/10.9708/jksci.2020.25.04.097