DOI QR코드

DOI QR Code

Effect of Alkanolamine Additives on CO2 Absorption Rate and Salt Formation of K2CO3 Aqueous Solution

알카놀아민 첨가제가 K2CO3 수용액의 이산화탄소 흡수속도와 염 석출에 미치는 영향

  • Moon, Cheol-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Jung, Taesung (Petroleum and Gas Laboratory, Korea Institute of Energy Research) ;
  • Cho, Chang Sin (Petroleum and Gas Laboratory, Korea Institute of Energy Research) ;
  • Kim, Jong-Nam (Petroleum and Gas Laboratory, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Department of Chemical Engineering, Chungnam National University)
  • 문철호 (충남대학교 화학공학과) ;
  • 정태성 (한국에너지기술연구원 석유가스연구실) ;
  • 조창신 (한국에너지기술연구원 석유가스연구실) ;
  • 김종남 (한국에너지기술연구원 석유가스연구실) ;
  • 이영우 (충남대학교 화학공학과)
  • Received : 2014.02.12
  • Accepted : 2014.04.02
  • Published : 2014.06.30

Abstract

In this study, the effect of alkanolamine additives, 2-amino-2-methyl-1-propanol (AMP) and 2-amino-2-methyl-1,3-propanediol (AMPD) on $CO_2$ absorption rate of $K_2CO_3$ solution and the formation of $KHCO_3$ crystals was investigated. The normalized $CO_2$ flux and the equilibrium $CO_2$ partial pressure were measured for 5 wt% additives and 30 wt% $K_2CO_3$ mixtures using a wetted-wall column unit at $40^{\circ}C$ and $60^{\circ}C$. Both additives showed the increased $CO_2$ absorption rate and lowered the equilibrium $CO_2$ partial pressure acting as promoters. Besides, AMPD which has two hydroxyl groups enhanced the formation of $KHCO_3$ solid product separated from the $CO_2$-rich solution from the results of batch cooling crystallization experiments.

본 연구에서는 입체장애 알카놀아민 첨가제인 2-아미노-2-메틸-1-프로판올(2-amino-2-methyl-1-propanol, AMP)과 2-아미노-2-메틸-1,3-프로판디올(amino-2-methyl-1,3-propanediol, AMPD)가 $K_2CO_3$ 흡수액의 이산화탄소 흡수속도와 $KHCO_3$ 고체염의 석출에 미치는 영향에 대해 고찰하였다. 흡수온도 $40^{\circ}C$$60^{\circ}C$에서 wetted-wall column을 이용하여 흡수속도와 이산화탄소 평형분압을 측정한 결과, 30 wt%의 고농도 $K_2CO_3$에 대해 5 wt% AMP와 AMPD는 흡수속도를 증가시키는 동시에 평형분압을 감소시켜, 흡수촉진제로서 흡수성능을 향상시키는 것으로 확인되었다. 또한, 회분식 냉각결정화 실험 결과, 복수의 히드록실기를 포함하는 AMPD가 흡수액을 냉각시 석출되는 $KHCO_3$ 고체염의 양을 증가시키는 것으로 나타났다.

Keywords

References

  1. Boot-Handford, M. E. et al., "Carbon Capture and Storage Update," Energy Environ. Sci., 7, 130-189 (2014). https://doi.org/10.1039/c3ee42350f
  2. Zaman, M., and Lee, J. H., "Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies," Kor. J. Chem. Eng., 30, 1497-1526 (2013). https://doi.org/10.1007/s11814-013-0127-3
  3. Bhown, A., and Freeman, B., "Analysis and Status of Postcombustion Carbon Dioxide Capture Technologies," Environ. Sci. Technol., 45, 8624-8632 (2011). https://doi.org/10.1021/es104291d
  4. Wang, M., Lawal, A., Stephenson, P., Sidders, J., and Ramshaw, C., "Post-combustion $CO_2$ Capture with Chemical Absorption: A State-of-the-art Review," Chem. Eng. Res. Des., 89, 1609-1624 (2011). https://doi.org/10.1016/j.cherd.2010.11.005
  5. Savage, D. W., Astarita, G., and Joshi, S., "Chemical Absorption and Desorption of Carbon Dioxide from Hot Carbonate Solutions," Chem. Eng. Sci., 35, 1513-1522 (1980). https://doi.org/10.1016/0009-2509(80)80045-5
  6. Knuutila, H., Olav J., and Hallvard, F. S., "Kinetics of the Reaction of Carbon Dioxide with Aqueous Sodium and Potassium Carbonate Solutions," Chem. Eng. Sci., 65, 6077-6088 (2010). https://doi.org/10.1016/j.ces.2010.07.018
  7. Svendsen, H. F., Hessen, E. T., and Mejdell, T., "Carbon Dioxide Capture by Absorption, Challenges and Possibilities,'" Chem. Eng. J., 171, 718-724 (2011). https://doi.org/10.1016/j.cej.2011.01.014
  8. Artanto, Y., Jansen, J., Pearson, P., Do, T., Cottrell, A., Meuleman, E., and Feron, P., "Performance of MEA and Amineblends in the CSIRO PCC Pilot Plant at Loy Yang Power in Australia," Fuel, 101, 264-275 (2012). https://doi.org/10.1016/j.fuel.2012.02.023
  9. Hu, L., "Methods and Systems for Deacidizing Gaseous Mixtures," US Patent No. 7,718,151 B1 (2010).
  10. NETL, "Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion $CO_2$ Capture," Project No.: DE-FE0004360. http://www.netl.doe.gov/ (2013).
  11. Endo, K., Stevens, G., Hooper, B., and Kentish, S. E., "A Process and Plant for Removing Acid Gases," WO Patent No. 2011/130796 A1 (2011).
  12. Kaldi, J., "$CO_2$CRC Capture Program and the UNO Mk 3 Process," 11th Annual Conference on Carbon Capture Utilization and Sequestration, Pittsburgh, PA, April 30, (2012).
  13. Lide, D. R., CRC Handbook of Chemistry and Physics, 87th ed., CRC Press (2007).
  14. Jo, H., Lee, M., Kim, B., Song, H., Gil, H., and Park, J., "Density and Solubility of $CO_2$ in Aqueous Solutions of (Potassium Carbonate + Sarcosine) and (Potassium Carbonate + Pipecolic Acid)," J. Chem. Eng. Data, 57, 3624-3627 (2012). https://doi.org/10.1021/je300782p
  15. Mahajani, V. V., and Danckwerts, P. V., "The Stripping of $CO_2$ from Amine-promoted Potash Solutions at $100 ^{\circ}C$," Chem. Eng. Sci., 38, 321-327 (1983). https://doi.org/10.1016/0009-2509(83)85015-5
  16. Cullinane, J. T., and Rochelle, G. T., "Carbon Dioxide Absorption with Aqueous Potassium Carbonate Promoted by Piperazine," Chem. Eng. Sci., 59, 3619-3630 (2004). https://doi.org/10.1016/j.ces.2004.03.029
  17. Thee, H., Smith, K. H., da Silva, G., Kentish, S. E., and Stevens, G. W., "Carbon Dioxide Absorption into Unpromoted and Borate-catalyzed Potassium Carbonate Solutions," Chem. Eng. J., 181-182, 694-701 (2012). https://doi.org/10.1016/j.cej.2011.12.059
  18. Kim, Y. E., Choi, J. H., Nam, S. C., and Yoon, Y. I., "$CO_2$ Absorption Capacity Using Aqueous Potassium Carbonate with 2-Methylpiperazine and Piperazine," J. Ind. Eng. Chem., 18, 105-110 (2012). https://doi.org/10.1016/j.jiec.2011.11.078
  19. Shen, S., Feng, X., Zhao, R., Ghosh, U. K., and Chen, A., "Kinetic Study of Carbon Dioxide Absorption with Aqueous Potassium Carbonate Promoted by Arginine," Chem. Eng. J., 222, 478-487 (2013). https://doi.org/10.1016/j.cej.2013.02.093
  20. Chen, X., and Rochelle, G. T., "Aqueous Piperazine Derivatives for $CO_2$ Capture Accurate Screening by a Wetted Wall Column," Chem. Eng. Res. Des., 89, 1693-1710 (2011). https://doi.org/10.1016/j.cherd.2011.04.002
  21. Bishnoi, S., "Carbon Dioxide Absorption and Solution Equilibrium in Piperazine Activated Methyldiethanolamine," Ph.D. Dissertation. The University of Texas at Austin (2000).
  22. Behrl, P., Maun, A., Deutgen, K., Tunnat, A., Oeljeklaus, G., and Gorner, K., "Kinetic Study on Promoted Potassium Carbonate Solutions for $CO_2$ Capture from Flue Gas," Energy Procedia, 4, 85-92 (2011). https://doi.org/10.1016/j.egypro.2011.01.027
  23. Bougie, F., Lauzon-Gauthier, J., and Iliuta, M. C., "Acceleration of the Reaction of Carbon Dioxide into Aqueous 2-Amino-2-hydroxymethyl-1,3-propanediol Solutions by Piperazine Addition," Chem. Eng. Sci., 64, 2011-2019 (2009). https://doi.org/10.1016/j.ces.2009.01.030
  24. Puxty, G., Rowland, R., Allport, A., Yang, Q., Bown, M., Burns, R., Maeder, M., and Attalla, M., "Carbon Dioxide Postcombustion Capture-A Novel Screening Study of the Carbon Dioxide Absorption Performance of 76 Amines," Environ. Sci. Technol., 43, 6427-6433 (2009). https://doi.org/10.1021/es901376a
  25. Bougie, F., and Iliuta, M. C., "Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-amino-2-hydroxymethyl-1,3-propanediol," Chem. Eng. Sci., 64, 153-162 (2009). https://doi.org/10.1016/j.ces.2008.08.034
  26. Vaidya, P. D., and Kenig, E. Y., "$CO_2$-Alkanolamin Reaction Kinetics: A Review of Recent Studies," Chem. Eng. Technol., 30, 1467-1474 (2007). https://doi.org/10.1002/ceat.200700268
  27. Cogoni, G., Baratti, R., and Romagnoli, J. A., "On the Influence of Hydrogen Bond Interactions in Isothermal and Nonisothermal Antisolvent Crystallization Processes," Ind. Eng. Chem. Res., 52, 9612-9619 (2013). https://doi.org/10.1021/ie303414b

Cited by

  1. Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines vol.20, pp.4, 2014, https://doi.org/10.7464/ksct.2014.20.4.383