DOI QR코드

DOI QR Code

Aldol Condensation over Acid-Base Bifunctional Metal-Organic Framework Catalysts

산, 염기 이원기능 금속-유기 구조체 촉매를 이용한 알돌 축합반응

  • 정영민 (군산대학교 나노화학공학과)
  • Received : 2014.05.19
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

Various types of MOFs (metal-organic frameworks) were prepared via hydrothermal and post-grafting methods and applied as catalysts for the synthesis of jasminaldehyde, one of the representative perfume intermediates, by Aldol condensation of benzaldehyde with heptanal. Although both acid and base sites could catalyze the reaction, the catalytic performance was strongly dependent on the physical properties as well as the nature of functionalization on MOFs. While the use of sulfonated MOF catalysts led to decrease of jasminaldehyde selectivity regardless of MOFs used, the selectivity change was found to rely on the MOF types in the case of the amine-functionalization. Among the catalysts tested, MIL-101 shows the best catalytic performance, which may suggest that MIL-101 has suitable acid properties to promote the Aldol condensation and the large pore of MIL-101 is also advantageous to alleviate the diffusion problem of bulky products.

수열합성 또는 후처리 방법을 통해 산 또는 염기능을 나타내는 다양한 종류의 이원기능 금속-유기 구조체 물질을 제조하여 대표적인 방향제 원료 중 하나인 자스민알데하이드(jasminaldehyde)를 합성하기 위한 벤즈알데하이드(benzaldehyde, $C_6H_5CHO$)와 헵탄알(heptanal, $C_6H_{13}CHO$)의 알돌 축합반응의 촉매로 활용하였다. 실험 결과, 산 또는 염기점 모두에서 축합반응이 진행되었으며, 촉매 성능은 기능기의 도입 여부 및 종류와 금속-유기 구조체의 물리적인 특성에 크게 의존하였다. Jasminaldehyde 선택도는 황산 기능기를 도입한 경우에는 금속-유기 골격체의 종류에 상관없이 감소하였으나, 아민 기능기를 도입한 경우에는 금속-유기 골격체의 종류에 따라 상반된 경향을 나타내었다. 평가한 촉매 중 MIL-101의 촉매 성능이 가장 우수하였는데, 이러한 결과는 MIL-101이 알돌 축합반응의 촉매로 작용하기에 충분한 산량과 적당한 산세기를 가지고 있으며, 세공 크기가 넓어 크기가 큰 생성물의 물질이동 측면에서 유리하기 때문인 것으로 판단된다.

Keywords

References

  1. Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., and Herm, Z. R., "Carbon Dioxide Capture in Metal-Organic Frameworks," Chem. Rev., 112, 724-781 (2012). https://doi.org/10.1021/cr2003272
  2. Li, J.-R., Sculley, J., and Zhou, H.-C., "Metal-Organic Frameworks for Separations," Chem. Rev., 112, 869-932 (2012). https://doi.org/10.1021/cr200190s
  3. Cohen, S. M., "Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks," Chem. Rev., 112, 970-1000 (2012). https://doi.org/10.1021/cr200179u
  4. Corma, A., Garcia, H., and Xamena, F. X. L., "Engineering Metal-Organic Frameworks for Heterogeneous Catalysis," Chem. Rev., 110, 4606-4655 (2010). https://doi.org/10.1021/cr9003924
  5. Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., and Hupp, J. T., "Metal-Organic Framework Materials as Catalysts," Chem. Soc. Rev., 38, 1450-1459 (2009). https://doi.org/10.1039/b807080f
  6. Alaerts L., Seguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., and De Vos, D. E., "Probing the Lewis Acidity and Catalytic Activity of the Metal-Organic Framework [Cu3(btc)2] (BTC = Benzene-1,3,5-tricarboxylate)," Chem. Eur. J., 12, 7353-7363 (2006). https://doi.org/10.1002/chem.200600220
  7. Henschel, A., Gedrich, K., Kraehnert, R., and Kaskel, S., "Catalytic Properties of MIL-101," Chem. Commun., 4192-4194 (2008).
  8. Kurfirtova, L., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., and Cejka, J., "High Activity of Iron Containing Metal-Organic Framework in Acylation of p-Xylene with Benzoyl Chloride," Catal. Today, 179, 85-90 (2012). https://doi.org/10.1016/j.cattod.2011.08.001
  9. Srirambalaji, R., Hong, S., Natarajan, R., Yoon, M., Hota, R., Kim, Y., Ko, Y. H., and Kim, K., "Tandem Catalysis with a Bifunctional Site-isolated Lewis Acid-Bronsted Base Metal-Organic Framework, NH2-MIL-101(Al)," Chem. Commun., 48, 11650-11652 (2012). https://doi.org/10.1039/c2cc36678a
  10. Akiyama, G., Matsuda, R., Sato, H., Takata, M., and Kitagawa, S. "Cellulose Hydrolysis by a New Porous Coordination Polymer Decorated with Sulfonic Acid Functional Groups," Adv. Mater., 23, 3294-3297 (2011). https://doi.org/10.1002/adma.201101356
  11. Vermoortele, F., Ameloot, R., Vimont, A., Serrec, C., and De Vos, D., "An Amino-modified Zr-terephthalate Metal-Organic Framework as an Acid-Bbase Catalyst for Cross-Aldol Condensation," Chem. Commun., 47, 1521-1523 (2011). https://doi.org/10.1039/c0cc03038d
  12. Prabhu, A. and Palanichamy, M., "Mesoporous Cubic la3d Materials for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde," Micro. Meso. Mater., 168, 126-131 (2013). https://doi.org/10.1016/j.micromeso.2012.09.020
  13. Climent, M. J., Corma, A., Garcia, H., Guil-Lopez, R., Iborra, S., and Fornes, V., "Acid-Base Bifunctional Catalysts for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde," J. Catal., 197, 385-393 (2001). https://doi.org/10.1006/jcat.2000.3086
  14. Yadav, G. D. and Aduri, P., "Aldol Condensation of Benzaldehyde with Heptanal to Jasminaldehyde over Novel Mg-Al Mixed Oxide on Hexagonal Mesoporous Silica," J. Mol. Catal. A: Chem., 355, 142-154 (2012). https://doi.org/10.1016/j.molcata.2011.12.008
  15. Zlotea, C., Phanon, D., Mazaj, M., Heurtaux, D., Guillerm, V., Serre, C., Horcajada, P., Devic, T., Magnier, E., Cuevas, F., Ferey, G., Llewellyn. P. L., and Latroche, M., "Effect of $NH_2$ and $CF_3$ Functionalization on the Hydrogen Sorption Properties of MOFs," Dalton Trans., 40, 4879-4881 (2011). https://doi.org/10.1039/c1dt10115c
  16. Chung, Y.-M., Kim, H.-Y., and Ahn, W.-S., "Friedel-Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates," Catal. Lett., 144, 817-824 (2014). https://doi.org/10.1007/s10562-014-1242-4
  17. Kim, J., Lee, Y. R., and Ahn, W.-S., "Dry-gel Conversion Synthesis of Cr-MIL-101 Aided by Grinding: High Surface Area and High Yield Synthesis with Minimum Purification," Chem. Commun., 49, 7647-7649 (2013). https://doi.org/10.1039/c3cc44559c
  18. Jiang, D., Keenan., L. L., Burrows, A. D., and Edler, K. J., "Synthesis and Post-synthetic Modification of MIL-101(Cr)-$NH_2$ via a Tandem Diazotisation Process," Chem. Commun., 48, 12053-12055 (2012). https://doi.org/10.1039/c2cc36344e
  19. Chung, Y.-M., Lee, Y.-R., and Ahn, W.-S., "A New Siteisolated Acid-base Bifunctional Metal-Organic Framework for One-pot Tandem Reaction," RSC Adv., 4, 23064-23067 (2014). https://doi.org/10.1039/c4ra02683g
  20. Sharma, S. K., Patel, H. A., and Jasra, R. V., "Synthesis of Jasminaldehyde using Magnesium Organo Silicate as a Solid Base Catalyst," J. Mol. Catal. A: Chem., 280, 61-67 (2008). https://doi.org/10.1016/j.molcata.2007.10.013

Cited by

  1. Preparation of chemically uniform and monodisperse microparticles as highly efficient solid acid catalysts for aldol condensation vol.175, 2018, https://doi.org/10.1016/j.ces.2017.09.052