DOI QR코드

DOI QR Code

승화성 나노 탄환입자와 표면위의 나노 고체입자의 충돌에서의 운동에너지 전달 특성

Characteristics of Kinetic Energy Transfer in Collisions Between Fragile Nanoparticle and Rigid Particle on Surface

  • 최민석 (포항공과대학교 기계공학부) ;
  • 이진원 (포항공과대학교 기계공학부)
  • Choi, Min Seok (Dept. of Mechanical Engineering, Pohang Univ. of Science and Technology) ;
  • Lee, Jin Won (Dept. of Mechanical Engineering, Pohang Univ. of Science and Technology)
  • 투고 : 2014.03.10
  • 심사 : 2014.05.27
  • 발행 : 2014.07.01

초록

충돌시 부서져 사라지는 승화성 나노 탄환입자로 표면 위에 붙어있는 고체 나노입자를 가격하는 과정에서 탄환입자로부터 목표입자로의 운동에너지 전달특성을 분자동역학 전산모사 방법을 이용하여 해석하였다. 탄환입자는 이산화탄소로 이루어져있으며 탄환의 크기, 온도 및 발사속도를 바꿔가며 전산모사를 수행하였다. 탄환입자로부터 목표입자에 전달되는 운동에너지 전달비율은 탄환 속도와 크기에 관계없이 일정하였지만 탄환의 온도에 따라 민감하게 변하였는데, 이는 온도에 따른 탄환입자의 결합력의 변화에서 기인하는 것이었다. 동일조건의 아르곤 탄환에 비하여 이산화탄소 탄환의 에너지 전달효율은 약 2 배 정도이며, 여기에서 이산화탄소 탄환의 높은 세정성능이 비롯됨을 최초로 확인하였다.

The characteristics of kinetic energy transfer during a collision between a rigid target particle on a surface and a fragile bullet particle moving at a high velocity were analyzed using molecular dynamics simulation. Bullet particles made of $CO_2$ were considered and their size, temperature, and velocity were varied over a wide range. The fraction of kinetic energy transferred from the bullet particle to the target particle was almost independent of the former's size or velocity; however, it was sensitively dependent on its temperature, which can be attributed to the change in the bullet rigidity with temperature. This fraction was nearly twice as high for $CO_2$ bullets as for Ar bullets. This result explains the reason for the more superior cleaning performance of $CO_2$ bullets than Ar bullets with regard to contaminants in the 10 nm size range.

키워드

참고문헌

  1. International Technology Roadmap for Semiconductors:2011 Yield Enhancement Report and Ttable, SEMATECH (2011) Austin, TX [http://www.itrs.net/Links/2011ITRS/Home2011.htm]
  2. Bakhtari, K., Guldiken, R. O., Makaram, P., Busnaina, A. A. and Park, J. G., 2006, "Experimental and Numerical Investigation of Nanoparticle Removal Using Acoustic Streaming and the Effect of Time," Journal of the Electrochemical Society, Vol. 153, No. 9, pp. G846-G850. https://doi.org/10.1149/1.2217287
  3. Lim, H., Jang, D., Kim, D., Lee, J. W. and Lee, J.-M., 2005, "Correlation Between Particle Removal and Shock-Wave Dynamics in the Laser Shock Cleaning Process," Journal of Applied Physics, Vol. 97, No. 5, pp. 054903-054908. https://doi.org/10.1063/1.1857056
  4. Lin, H., Chioujones, K., Lauerhaas, J., Freebern, T. and Yu, C., 2007, "Damage-Free Cryogenic Aerosol Clean Processes," Semiconductor Manufacturing, IEEE Transactions on, Vol. 20, No. 2, pp. 101-106. https://doi.org/10.1109/TSM.2007.896643
  5. Rimai, D.S and Quesnel, D. J., 2001, Fundamentals of Particle Adhesion, Global Press.
  6. Sherman, R., 2007, "Carbon Dioxide Snow Cleaning," Particulate Science and Technology, Vol. 25, No. 1, pp. 37-57. https://doi.org/10.1080/02726350601146424
  7. Bae, H., Kim, I., Kim, E. and Lee, J. W., 2010, "Generation of Nano-Sized Ar-$N_2$ Compound Particles by Homogeneous Nucleation and Heterogeneous Growth in a Supersonic Expansion," Journal of Aerosol Science, Vol. 41, No. 3, pp. 243-256. https://doi.org/10.1016/j.jaerosci.2009.11.005
  8. Choi, M. S., Yi, M. Y., Lee, K. H. and Lee, J. W., 2012, "Molecular-Dynamics Simulations of Thermal Accommodation of Helium Gas on a Nanoparticle," Journal of Aerosol Science, Vol. 44, No. pp. 62-70. https://doi.org/10.1016/j.jaerosci.2011.10.002
  9. Yang, H.-J., Lee, K.-H., Choi, M. S., Yi, M. Y. and Lee, J. W., 2009, "Effective Condensation Coefficient on a Nanoparticle," Applied Physics Letters, Vol. 95, No. 22, pp. 223109-223109-3. https://doi.org/10.1063/1.3270538
  10. Hwang, K. S., Lee, K. H., Kim, I. H. and Lee, J. W., 2011, "Removal of 10-nm Contaminant Particles from Si Wafers Using Argon Bullet Particles," Journal of Nanoparticle Research, Vol. 13, No. 10, pp. 4979-4986. https://doi.org/10.1007/s11051-011-0479-8
  11. Kim, I. and Lee, J., 2013, "The Removal of 10 nm Contaminant Particles from Micron-Scale Trenches Using $CO_2$ Nano Bullets," Journal of Nanoparticle Research, Vol. 15, No. 4, pp. 1-13.
  12. Choi, M. S., Yi, M. Y. and Lee, J. W., 2013, "Criteria for Removal of Nanoparticles Adhered to a Substrate by Bombardment with Nano-Sized Bullets," Journal of Aerosol Science, Vol. 63, pp. 38-47. https://doi.org/10.1016/j.jaerosci.2013.04.006
  13. Yi, M. Y., Kim, D. S., Lee, J. W. and Koplik, J., 2005, "Molecular Dynamics (MD) Simulation on the Collision of a Nano-Sized Particle onto Another Nanosized Particle Adhered on a Flat Substrate," Journal of Aerosol Science, Vol. 36, No. 12, pp. 1427-1443. https://doi.org/10.1016/j.jaerosci.2005.03.013
  14. Allen, M. P. and Tildesley, D. J., 1989, Computer simulation of liquids, Oxford university press.
  15. Chen, L., Shibuta, Y., Kambara, M. and Yoshida, T., 2013, "Molecular Dynamics Simulation of the Role of Hydrogenated Si Clusters for Fast Rate Mesoplasma Epitaxy," Journal of Physics D: Applied Physics, Vol. 46, No. 42, p. 425302. https://doi.org/10.1088/0022-3727/46/42/425302
  16. Wilhelm, E. and Battino, R., 1971, "Estimation of Lennard‐Jones (6, 12) Pair Potential Parameters from Gas Solubility Data," The Journal of Chemical Physics, Vol. 55, p. 4012. https://doi.org/10.1063/1.1676694
  17. Hockney, R. W., 1970, "Potential Calculation and some Applications," Methods of Computation Physics Vol. 9, pp. 135-211.
  18. Dahneke B., 1972, "The Influence of Flattening on the Adhesion of Particles," Journal of Colloid and Interface Science, Vol. 40, pp. 1-13. https://doi.org/10.1016/0021-9797(72)90168-3