DOI QR코드

DOI QR Code

Warm Spray 공정과 Cu-Ga 및 Cu-In 혼합 분말을 이용한 CGI계 복합 코팅층의 제조 및 특성

Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders

  • 투고 : 2014.06.10
  • 심사 : 2014.06.19
  • 발행 : 2014.06.28

초록

This study manufactured a CIG-based composite coating layer utilizing a new warm spray process, and a mixed powder of Cu-20at.%Ga and Cu-20at.%In. In order to obtain the mixed powder with desired composition, the Cu-20at.%Ga and Cu-20at.%In powders were mixed with a 7:1 ratio. The mixed powder had an average particle size of $35.4{\mu}m$. Through the utilization of a warm spray process, a CIG-based composite coating layer of $180{\mu}m$ thickness could be manufactured on a pure Al matrix. To analyze the microstructure and phase, the warm sprayed coating layer underwent XRD, SEM/EDS and EMPA analyses. In addition, to improve the physical properties of the coating layer, an annealing heat treatment was conducted at temperatures of $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ for 1 hour each. The microstructure analysis identified ${\alpha}$-Cu, $Cu_4In$ and $Cu_3Ga$ phases in the early mixed powder, while $Cu_4In$ disappeared, and additional $Cu_9In_4$ and $Cu_9Ga_4$ phases were identified in the warm sprayed coating layer. Porosity after annealing heat treatment reduced from 0.75% (warm sprayed coating layer) to 0.6% (after $600^{\circ}C/1hr$. heat treatment), and hardness reduced from 288 Hv to 190 Hv. No significant phase changes were found after annealing heat treatment.

키워드

참고문헌

  1. B. C. Choi, D. Y. Park, H. J. Kim, I. H. Oh and K. A. Lee: J. Kor. Powd. Met. Inst., 18 (2011) 552 (Korean). https://doi.org/10.4150/KPMI.2011.18.6.552
  2. M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg and A. N. Tiwari: Thin Solid Films, 431 (2003) 58.
  3. M. Nouiri, Z. B. Ayadi, K. Khirouni, S. Alaya, K. Djessas and S. Yapi: Mater. Sci. Eng. C, 27 (2007) 1002. https://doi.org/10.1016/j.msec.2006.07.022
  4. K. Sakurai, R. Hunger, N. Tsuchimochi, T. Bada, K. Matsubara, P. Fons, A. Yamada, T. Kojima, T. Deguchi, H. Nadanishi and S. niki: Thin Solid Films, 431 (2003) 6.
  5. T. Nakano, T. Suzuki, N. Ohunki and S. Bada: Thin Solid Films 334 (1998) 192. https://doi.org/10.1016/S0040-6090(98)01142-0
  6. J. W. Lim, J. W. Bae, Y. F. Zhu, S. Lee, K. Mimura and M. Issiki: Surf. Coat. Tech., 201 (2006) 1899. https://doi.org/10.1016/j.surfcoat.2006.01.009
  7. J. Sarkar, P. McDonald and P. Gilman: Thin Solid Films, 517 (2009) 1970. https://doi.org/10.1016/j.tsf.2008.10.065
  8. K. S. Cho, I. B. Song, M. H. Chang, J. H. Yun, M. H. Oh, J. K. Hong and N. K. Park: J. Kor. Powd. Met. Inst., 17 (2010) 365 (Korean). https://doi.org/10.4150/KPMI.2010.17.5.365
  9. G. Bertrand, So. Deleonibus, B. Precitali, G. Guegan, X. Jehl, M. Sanquer and F. Balestra: Solid State Electron, 48 (2004) 505. https://doi.org/10.1016/j.sse.2003.09.026
  10. M. Moritama, T. Morita, S. Tsukimoto, M. Shimada and M. Murakami: Mater. Trans., 46 (2005) 1036. https://doi.org/10.2320/matertrans.46.1036
  11. K. J. Kardokus, C. T. Wu, Parfeniuk, L. Chrstopher and E. B. Jane: U.S. Patent 6,645,427. Nov. 11, 2003 "Copper Sputtering Target Assembly and Method of Making Same".
  12. C. F. Lo, P. McDonald, D. Draper and P. Gilman: J. Electro. Mater., 34 (2005) 1468. https://doi.org/10.1007/s11664-005-0152-z
  13. Y. M. Jin, M. G. Jeon, D. Y. Park, H. J. Kim, I. H. Oh and K. A. Lee: J. Kor. Powd. Met. Inst., 20 (2013) 245 (Korean). https://doi.org/10.4150/KPMI.2013.20.4.245
  14. Y. M. Jin, J. H. Cho, D. Y. Park, J. H. Kim and K. A. Lee: J. Therm. Spray Technol., 20 (2011) 497. https://doi.org/10.1007/s11666-010-9552-6
  15. J. Kawakita, H. Katanoda, M. Watanabe, K. Yokoyama and S. Kuroda: Surf. Coat. Tech., 202 (2008) 4369. https://doi.org/10.1016/j.surfcoat.2008.04.011
  16. P. Chivavibul, M. Watanaber, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato and J. Kitamura: J. Therm. Spray Technol., 17 (2008) 750. https://doi.org/10.1007/s11666-008-9271-4
  17. K. H. Kim, S. Kuroda, M. Watanaber, R. Huang, H. Fukanuma and H. Katanoda: J. Therm. Spray Technol., 21 (2012) 550. https://doi.org/10.1007/s11666-011-9703-4
  18. J. Kawakita, N. Maruyama, S. Kuroda, S. Hiromoto and A. Yamamoto: Mater. Trans., 49 (2008) 317. https://doi.org/10.2320/matertrans.T-MRA2007882
  19. J. Onizawa, J. Kawakita, S. Kuroda, T. Shinohara, M. Suzuki, S. Sodeoka and Y. Sakamoto: J. Solid Mech. Mater. Eng., 2 (2008) 156. https://doi.org/10.1299/jmmp.2.156
  20. P. Chivavibul, M. Watanaber, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato and J. Kitamura: J. Therm. Spray Technol., 19 (2010) 81. https://doi.org/10.1007/s11666-009-9438-7
  21. P. R. Subramanian, T. B. Massalski and D. E. Laughlin: Acta Materila, 36 (1988) 937. https://doi.org/10.1016/0001-6160(88)90148-4
  22. Z. Bahari, E. Dichi, B. Legendre and J. Dugue: Termocimica Acta 401 (2003) 131. https://doi.org/10.1016/S0040-6031(02)00500-2
  23. J. N. Hwang, M. J. Lee, H. j. Kim, I. H. Oh and K. A. Lee: J. Kor. Powd. Met. Inst., 19 (2012) 348 (Korean). https://doi.org/10.4150/KPMI.2012.19.5.348

피인용 문헌

  1. Fabrication and Microstructure/Properties of Bulk-typeTantalum Material by a Kinetic Spray Process vol.23, pp.1, 2016, https://doi.org/10.4150/KPMI.2016.23.1.8