DOI QR코드

DOI QR Code

Expression of a set of glial cell-specific markers in the Drosophila embryonic central nervous system

  • Received : 2013.08.05
  • Accepted : 2013.10.11
  • Published : 2014.06.30

Abstract

The types of glia in the central nervous system (CNS) of the Drosophila embryo include longitudinal glia (LG), cell body glia (CBG), and peripheral glia (PG). Transcription factors, such as glial cell missing and reverse polarity, are well-established general glial cell markers. Only a few glial cell-specific markers have been identified in the Drosophila embryonic CNS, thus far. In the present study, we employed the glial cell-specific markers for LG (vir-1/CG5453 and CG31235), CBG (fabp/CG6783 and CG11902), and PG (CG2310 and moody/CG4322), and comprehensively analyzed their expression patterns, during the embryonic CNS development. Our study validated the specificity of a set of glial markers, and further revealed their spatio-temporal expression patterns, which will aid in the understanding of the developmental lineage, and investigating their role in the development and homeostasis of the Drosophila CNS in vivo.

Keywords

References

  1. Kettenmann, H. and Ransom, B. R. (2005) Neuroglia, 2nd ed., Oxford University Press, New York, USA.
  2. Barres, B. A. (2008) The mystery and magic of glia: A perspective on their roles in health and disease. Neuron 60, 430-440. https://doi.org/10.1016/j.neuron.2008.10.013
  3. Allen, N. J. and Barres, B. A. (2009) Glia-more than just brain glue. Nature 457, 675-677. https://doi.org/10.1038/457675a
  4. Kim, M., Li, Y.-X., Dewapriya, P., Ryu, B. and Kim, S.-K. (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep. 46, 398-403. https://doi.org/10.5483/BMBRep.2013.46.8.237
  5. Kim, J. Y., Lee, E. Y., Sohn, H. J., Kim, S. W., Kim, C. H., Ahn, H. Y., Kim, D. W., Cho, S. S. and Seo, J. H. (2013) Differential expression of ${\alpha}B$-crystallin causes maturation-dependent susceptibility oligodendrocytes to oxidative stress. BMB Rep. 46, 501-506. https://doi.org/10.5483/BMBRep.2013.46.10.015
  6. Freeman, M. R. and Doherty, J. (2006) Glial cell biology in Drosophila and vertebrates. Trends. Neurosci. 29, 82-90. https://doi.org/10.1016/j.tins.2005.12.002
  7. Stork, T., Bernardos, R. and Freeman, M. R. (2012) Analysis of glial cell development and function in Drosophila; in Cold Spring Harbor Protocols, Zhang, B., Freeman, M. R. and Waddell, S. (eds.), pp. 53-74, Cold Spring Harbor Laboratory Press, New York, USA.
  8. Ito, K., Urban, J. and Technau, G. M. (1995) Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux's Arch. Dev. Biol. 204, 284-307. https://doi.org/10.1007/BF02179499
  9. Beckervordersandforth, R. M., Rickert, C., Altenhein, B. and Technau, G. M. (2008) Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression. Mech. Dev. 125, 542-557. https://doi.org/10.1016/j.mod.2007.12.004
  10. Hosoya, T., Takizawa, K., Nitta, K. and Hotta, Y. (1995) glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025-1036. https://doi.org/10.1016/0092-8674(95)90281-3
  11. Jones, B. W., Fetter, R. J., Tear, G. and Goodman, C. S. (1995) glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82, 1013-1023. https://doi.org/10.1016/0092-8674(95)90280-5
  12. Vincent, S., Vonesch, J. L. and Giangrande, A. (1996) Glide directs glial fate commitment and cell fate switch between neurones and glia. Development 122, 131-139.
  13. Egger, B., Leemans, R., Loop, T., Kammermeier, L., Fan, Y., Radimerski, T., Strahm, M. C., Certa, U. and Reichert, H. (2002) Gliogenesis in Drosophila: genome-wide analysis of downstream genes of glial cells missing in the embryonic nervous system. Development 129, 3295-3309.
  14. Freeman, M. R., Delrow, J., Kim, J., Johnson, E. and Doe, C. Q. (2003) Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567-580. https://doi.org/10.1016/S0896-6273(03)00289-7
  15. Altenhein, B., Becker, A., Busold, C., Beckmann, B., Hoheisel, J. D. and Technau, G. M. (2006) Expression profiling of glial genes during Drosophila embryogenesis. Dev. Biol. 296, 545-560. https://doi.org/10.1016/j.ydbio.2006.04.460
  16. Saleh, M. C., Tassetto, M., van Rij, R. P., Goic, B., Gausson, V., Berry, B., Jacquier, C., Antoniewski, C. and Andino, R. (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458, 346-350. https://doi.org/10.1038/nature07712
  17. Stacey, S. M., Muraro, N. I., Peco, E., Labbe, A., Thomas, G. B., Baines, R. A., van Meyel, D. J. (2010) Drosophila glial glutamate transporter eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J. Neurosci. 30, 14446-14457. https://doi.org/10.1523/JNEUROSCI.1021-10.2010
  18. Bainton, R. J., Tsai, L. T. Y., Schwabe, T., DeSalvo, M., Gaul, U. and Heberlein, U. (2005) moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell 123, 145-156. https://doi.org/10.1016/j.cell.2005.07.029
  19. Schwabe, T., Bainton, R. J., Fetter, R. D., Heberlein, U. and Gaul U. (2005) GPCR signaling is required for blood-brain barrier formation in Drosophila. Cell 123, 133-144. https://doi.org/10.1016/j.cell.2005.08.037
  20. O'Neill, J. W. and Bier, E. (1994) Double in situ hybridization using biotin and digoxigenin tagged RNA probes. Biotechniques 17, 873-875.
  21. Lehmann, R. and Tautz, D. (1994) In situ hybridization to RNA; in Methods in Cell Biology Vol. 44, Goldstein, L. S. B., Fyrberg, E. A. (eds.), pp. 576-597, Academic Press, San Diego, USA.