References
-
T. Abulrub and R. Oehmke, On the generators of
${\mathbb{Z}}_4$ cyclic codes of length$2^e$ , IEEE Trans. Inform. Theory 49 (2003), 2126-2133. https://doi.org/10.1109/TIT.2003.815763 -
T. Blackford, Cyclic code over
${\mathbb{Z}}_4$ of oddly even length, Discrete Appl. Math. 138 (2003), no. 1, 27-40. -
T. Blackford, Negacyclic codes over
${\mathbb{Z}}_4$ of even length, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1417-1424. https://doi.org/10.1109/TIT.2003.811915 -
H. Q. Dinh, Negacyclic codes of length
$2^s$ over Galois rings, IEEE Trans. Inform. Theory 51 (2005), no. 12, 4252-4262. https://doi.org/10.1109/TIT.2005.859284 - H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Field Appl. 14 (2008), no. 1, 22-40. https://doi.org/10.1016/j.ffa.2007.07.001
-
H. Q. Dinh, Constacyclic codes of length
$2^s$ over Galois exlension rings of${\mathbb{F}}_2\;+\;u{\mathbb{F}}_2$ , IEEE Trans. Inform. Theory 55 (2009), no. 4, 1730-1740. https://doi.org/10.1109/TIT.2009.2013015 -
H. Q. Dinh, Constacyclic codes of length
$p^s$ over${\mathbb{F}}_{p^m}\;+\;u{\mathbb{F}}_{p^m}$ , J. Algebra 324 (2010), no. 5, 940-950. https://doi.org/10.1016/j.jalgebra.2010.05.027 - H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10.1109/TIT.2004.831789
-
S. T. Dougherty and S. Ling, Cyclic codes over
${\mathbb{Z}}_4$ of even length, Des. Codes Cryptogr. 39 (2006), no. 2, 127-153. https://doi.org/10.1007/s10623-005-2773-x -
A. R. Hammous, Jr., P. V. Kumar, A. R. Calderbark, J. A. Sloame, and P. Sole, The
${\mathbb{Z}}_4$ -linearity of Kordock, Preparata, Goethals, and releted codes, IEEE Trans. Inform. Theory 40 (1994), 301-319. https://doi.org/10.1109/18.312154 - W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
-
P. Kanwar and S. R. Lopez-Permouth, Cyclic codes over the integers modulo
${\mathbb{Z}}_{p^m}$ , Finite Field Appl. 3 (1997), no. 4, 334-352. https://doi.org/10.1006/ffta.1997.0189 - S. Ling, H. Niederreiter, and P. Sole, On the algebraic structure of quasi-cyclic codes. IV, Repeated root, Des. Codes. Cryplogr. 38 (2006), no. 3, 337-361. https://doi.org/10.1007/s10623-005-1431-7
- G. H. Norton and A. Salagean, On the struture of linear and cyclic codes over a finite chain ring, AAECC 10 (2000), no. 6, 489-506. https://doi.org/10.1007/PL00012382
- V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.
- A. Salagean, Repelated-root cyclic and negacyclic codes over finite chain rings, Discrete Appl. Math. 154 (2006), 413-419. https://doi.org/10.1016/j.dam.2005.03.016
-
J. Wolfmann, Negacyclic and cyclic codes over
${\mathbb{Z}}_4$ , IEEE Trans. Inform. Theory. 45 (1999), no. 7, 2527-2532. https://doi.org/10.1109/18.796397 -
S. Zhu and X. Kai, Dual and self-dual negacyclic codes of even length over
${\mathbb{Z}}_2a$ , Discrete Math. 309 (2009), no. 8, 2382-2391. https://doi.org/10.1016/j.disc.2008.05.013 -
S. Zhu and X. Kai, A class of constacyclic codes over
${\mathbb{Z}}_{p^m}$ , Finite Field Appl. 16 (2010), no. 4, 243-254. https://doi.org/10.1016/j.ffa.2010.03.003