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SOME CLASSES OF REPEATED-ROOT CONSTACYCLIC

XIUSHENG LIU AND XIAOFANG XU

ABSTRACT. Constacyclic codes of length p® over R = Fpm + ulFpm +

Rz
<xps[—]1> i
investigate constacyclic codes of length p® over R. The units of the ring
R are of the forms v, o+ uf3, o+ uf + u?v and o + u?~, where o, 8 and
v are nonzero elements of F,m. We obtain the structures and Hamming
distances of all (a+uf3)-constacyclic codes and (a-+uB-+u2v)-constacyclic
codes of length p® over R. Furthermore, we classify all cyclic codes of
length p® over R, and by using the ring isomorphism we characterize
7y-constacyclic codes of length p® over R.

u2]Fpm are precisely the ideals of the ring In this paper, we

1. Introduction

Constacyclic codes over finite rings are an important class of codes from
both a theoretical and practical viewpoint. In the 1990s, it was shown that
certain good nonlinear binary codes can be constructed from cyclic codes over
Z4 via the Gray map [10]. Since then, constacyclic codes over finite chain
rings have been studied by many authors [8, 12, 17]. In these studies, the code
length n is relatively prime to the characteristic of the residue field of a finite
chain ring. The case when the code length n is divisible by the characteristics
p of the residue field of a finite chain ring yields the so-called repeated-root
codes, which were studied since 2003 by several authors such as Abualrub and
Oehmke [1], Blackford [2, 3], Noton and Saldgean [14], Saldgean [16], Ling
et al. [13], Zhu and Kai [18, 19]. In recent years, Dinh and Dougherty have
studied the description of several classes of constacyclic codes, such as cyclic
and negacyclic codes over various types of finite rings [4, 5, 6, 7, 8, 9]. In this
paper, we continue to study repeated-root constacyclic codes over the chain
ring Fpm + uFpm + u?Fpm.
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The paper is organized as follows. In Section 2, we will recall some no-
tations and properties about constacyclic codes over finite chain rings, and
the structure and Hamming distance of a-constacyclic codes of length p® over
F,m, where « is a nonzero element of F,~. Using the structure and Hamming
distances of constacyclic codes over IF,m , we investigate the structure and Ham-
ming distance of (a + u/3)-constacyclic codes and (a + u3 + u?y)-constacyclic

codes of length p* over R = Fym + uFym + u?F,m in Section 3. We show that
Rotup = ___RBl=l Royupiury = S E—
(2P® —(atup)) YT (2P —(atuf+uy))

with maximal ideal of (agz — 1), where ag is completely determined by «, s
and m. In Section 4, we address the cyclic codes of length p® over R. These

is a finite chain ring

cyclic codes are the ideals of the ring R; = <zfs[zj1>, which is a local ring with
the maximal ideal (x — 1,u). We classify all such cyclic codes by categorizing
the ideals of the local ring R; into 8 types, and provide a detailed structure of
ideals in each type. In the last section, we build a one-to-one correspondence
between cyclic and ~y-constacyclic codes of length p® over R; via the ring iso-
morphism ¢, which allows us to apply our results about cyclic codes in Section

4 to ~-constacyclic codes over R.

2. Preliminaries

Let F,m be a finite field with p™ elements, where p is a prime and m is
an integer number. Let R be the commutative ring Fpm + uFpm + u?Fpm =
{a +bu+ cu® | a,b,c € Fpm} with u® = 0. The ring R is a chain ring, it has
a unique maximal ideal (u) = {au | a € Fym}. A code of length n over R is
a nonempty subset of R™, and a code is linear over R if it is an R-submodule
of R". Let C be a code of length n over R and P(C) be its polynomial
representation, i.e.,

n—1
P(C) = {Z cix' | (co,c1y...ycn1) € CY.
i=0

For a unit A of R, the A-constacyclic (A-twisted) shift 7, on R™ is the shift
(a0, a1, ..., an-1) = (Aap-1,0a0, ..., an-2).

A linear code C' is said to be A-constacyclic if 7,(C) = C, i.e., C is closed

under the A-constacyclic shift 7). In the case A = 1, these A-constacyclic codes

are called cyclic codes and in the case A = —1, these A-constacyclic codes are

called negacyclic codes. A code C' of length n over R is A-constacyclic if and

only if P(C) is an ideal of Rzl and a code C of length n over R is cyclic

(zm =X}’
if and only if P(C) is an ideal of (le[f}w, and a code C of length n over R is
negacyclic if and only if P(C) is an ideal of <£[f1> .

Let z = (w0, 21, .,2n—1) and y = (Y0, Y1, --,Yn—1) € R™. The Euclidean
inner product or dot product of z and y in R™ is defined as x -y = zoyo +
T1y1 + -+ + Tn_1Yn—1, Where the operation is performed in R. The dual code
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of C is defined as C*+ = {x € R" | z-y = 0,Vy € C}. A code C is called
self-orthogonal if C C C*, and it is called self-dual if C' = C*. It is well known
that the dual of a A-constacyclic code is a A~ !-constacyclic code [7].

The following equivalent conditions are known for the class of finite commu-
tative chain rings [8].

Proposition 2.1. Let R be a finite commutative ring. Then the following
conditions are equivalent:

(i) R is a local ring and the mazimal ideal M of R is principal, i.e., M = (r)
for some r € R;

(ii) R is a local principal ideal ring;

(iii) R is a chain ring with ideals (r*), and |(r')| = |[R|N(W=%, 0 <i < N(r),
where |R| = £ and N(r) is the nilpotency of .

The following proposition can be found in [11, 15].

Proposition 2.2. Let p be a prime and R be a finite chain ring of size p™.
The number of codewords in any linear code C of length n over R is p* for
some integer k € {0,1,...,an}. Moreover, the dual code C+ has pt codewords,
where k +1 = an, i.e., |C||C*| = |R|".

Let A be a nonzero element of the field F,m. Let C' be a A-constacyclic code
of length p® over F,m. Then A~P" = X\~1. By the division algorithm, there
exist nonnegative integers Ay, A, such that s = A\ym + A, where s,m > 0,0 <

Ar <m—1 Let A\g = —AP """ = A" Then A = AP =
—A~1. We will use the following.
Proposition 2.3 ([5, Theorem 4.11]). Let C be a A-constacyclic code of length
p® over Fym. Then C = ((Aoz + 1)) C 5’;?7[33]) fori e {0,1,...,p°}, and its
Hamming distance d(C) is completely determined by
1, ifi=0,
I+2, iflp P +1<i<(+1)p* ", where 0 <1< p—2,
d(C)=q (t+1)p", if p* = p" "+t = V)p* 1 <i <p° = p T F s
where 1 <t<p—1,and1 <k <s—1,
0, if i = p°.

3. (a4 upB) or (a + uB + u2~)-constacyclic codes of length p° over
ring R

Let «, 8 and v be nonzero elements of the field Fpm. Then o + uf and
a+uf+u?y are units of R. The (a+uf3)-constacyclic codes of length p® over R
and the (a+uB+u?y)-constacyclic

Rlz]
(2P® —(atuBtu?y)) "
By the division algorithm, there exist nonnegative integers ag, o, such that

. . B R[]
are ideals of the ring Ro g = T (atuf))’
codes of length p® over R are ideals of the ring Ry yg4u2y =
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_(ag+l)m—s
5 = agm + o, where 0 < o, < m — 1. Let ag = o P ? =

s _(ag+1)m _
Then of =a™ 7 =a 1

Lemma 3.1. In Ratup 0r Rarupiuzys ((aoz — 1)P°) = (u). In particular,
apr — 1 is nilpotent in Royup 07 Rotuguzy with nilpotency index 3p°.

Proof. f 1 <i < p* —1, then p | (1’;).
(i) By computing in Ra4us,

(aoz = 17" = (agz)” ~1 +Z (%) t@onyi(-1y

So {(apr — 1)P°) = (u).
(ii) By computing in R yg4u2+ys

(apx — 1) = (ag2)”" — 1 +Z < A ) (ag) (~1)7"~

So {(apx — 1)P") = (u).
The last statement is straightforward because u has nilpotency index 3 in
ROtJruﬁ or Ra+u,(3+u2'y' l:l

Theorem 3.2. The ring Rotug 07 Roquptuzy 5 a chain ring whose ideal is
separately

Roup = (1) 2 (o — 1) 2 -+ 2 ((aoz — 1)* 1) 2 ((apz — 1)) = (0),
Rosupiury = (1) 2 {aox —1) 2 -+ 2 ((aoz — 1)* 1) 2 ((cpz — 1)*") = (0).

Proof. Let f(x) be an element in Roiug or Roiygiu2y- Then f(x) can be
represented as

p°—1 p*—1 p’-1
f(z) = Z agi(cor — 1) +u Z ari(oor — 1) +u? Z asi(oozr —1)%,
i=0 i=0 i=0

where ag;, a1, a2; € Fpm. By Lemma 3.1, u = (apz — P ap™t, so f(z) =
ago + (apx — 1)g(x) for some polynomial g(x) € Ratup or g(z) € Rayupgtu2~-
Because agz—1 is nilpotent in Rqy g 0r Rayygtu2~, f(2) is not invertible if and
only if agg = 0. It is equivalent to the fact that f(x) is in (agz — 1). Therefore,
Rayup or Ryiyp iz is alocal ring with maximal ideal (agz —1). That means
that Rotug Or Ratupiu2~ is a chain ring whose ideals are ((agz — 1)), 0 <
1 < 3p°.
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m m

We have (o + uf 4+ u2y)P"" = (a#")P" = o = a, hence (o + uf +
u2y)?"" ot = 1. Therefore,

(a+uﬁ+u27)_1 _ (a+u6+u27)p2m_1a—l
_ [(a + uﬂ)pm+1_1 4 (pm+1 _ 1)(0{ + uﬂ)pm+l—2u27]a—1

2m 2m
g (p *1)2(2? *2)uzﬂzap

2m _q 2m _g

= [aP — upBa®

— (a+uB)?" 2uPyla?

= [1 —ufa™t —u*ya~t +u?BPa !

=a ' —uBa? —uP(ya? - B2a?).
This implies that if C' = ((apz — 1)) is a (a + uf + u?y)-constacyclic code of
length p* over R, then its dual Ct is a [a™! — uBa~2 — u?(ya~2 — f2a73)]-
constacyclic code of length p* over R. That means C* is an ideal of the chain
. Rz
ring Raﬁl7uﬁa*27u2('ya*27ﬁ2a*3) = (Ips_(a—l_uBa—ZLiZ(,ya—Z_BZa—S))>‘
|C| = pmBP =9 it follows that |[C+| = p™ and C+ = ((ag'z — 1) %) C

Ro-1_wpa—2—u2(va-2-p2a-3). We obtain the following theorem.

Since

Theorem 3.3. For each (a + uf + u*y)- constacyclzc code of length p° over
R, C = {((aox — 1)") C Rotuptuz~, its dual is the [a™ " —ufa™? — u?(ya™2 —
ﬂ2 3)]-constacyclic code

CL = <(aalz - 1)3p57i> c Ra*17uﬁa*27u2('ya*27ﬁ2a*3)7

me

which contains p™* codewords.

Similarly, we have the following theorem.
Theorem 3.4. For each (a + uf)-constacyclic code of length p* over R, C =
{(apz—1)") C Rotup, its dual is the (o=t —uBa™?+u?B2a~3)-constacyclic code
Ct = {((ag's —1)%" 7% C Ry-1_upa-24u2p2, which contains p™ codewords.
In the following, we consider the Hamming distance of («+ u/3)-constacyclic

codes or (o + ufB + u?vy)-constacyclic codes of length p* over R.

Theorem 3.5. Let C' be a (a + uf)-constacyclic code or (o + ufB + u?vy)-
constacyclic code of length p* over R. Then C = ((apz — 1)*) C Ratup or
Rotuptuzy fori e {0,1,2,...,3p°}, and the Hamming distance d(C') is com-
pletely determined by

1, if 0 <i <2p°

142, if 2p° +1p* P +1<i < 2p°+(1+ 1)p*~ !, where 0< 1< p—2,
d(C) =1 (t+1)p*,if 3p" — p" 4+ (t=1)p" "1+ < < 3pT—p*TFap T,

where 1 <t<p—1,and 1 <k<s-—1,

0, if i = 3p°.
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Proof. By Lemma 3.1, ((apz — 1)?P") = (u?) in Ratup OF Rapupiuzy- We
consider the following two cases.

Case 1: 1 < i < 2p*. Then u? € {(apx — 1)), and thus {(apz — 1)) has a
Hamming distance of 1.

Case 2: 2p*+1 <i < 3p°*—1. Then ((agz—1)%) = (u?(apx—1)""2"), which
means that the codewords of the code ((apz —1)") in Ratups OF Rotuptuzy are
Fpm [z]
(27" —a)’

with w, which have the same Hamming weights. Moreover, the codes {(apz —

precisely the codewords of the code ((agz — 1)"=2"") in multiplied

1)i=2P%) in 52@"_[32) are a-constacyclic codes of length p® over F,m, with the
Hamming distance computed as Proposition 2.3. We complete the proof of the

theorem. 0

4. Cyclic codes of length p® over R

Cyclic codes of length p°® over R are ideals of the residue ring Ry = 7 fifz]

w1y
It is easy to prove the following lemma.

Lemma 4.1. The followings hold in Ry:
(i) For any nonnegative integer t, (z — 1)P" = zP' — 1.
(ii) = — 1 is nilpotent with the nilpotency index p®.

Unlike Ro4ug, the ring R; is not a chain ring. It is a local ring whose
maximal ideal is not principal.

Proposition 4.2. The ring Ry is a local ring with the mazimal ideal (u,z—1),
but it is not a chain ring.

Proof. Any f(x) € Ry can be represented as

p°—1 p°—1 ps—1
flz) = Z boi(z —1)" +u Z bii(z —1)" +u? Z boi(z — 1)
1=0 i=0 i=0
p°—1 p°—1 p°—1
= boo+ (z — 1) Z boi(x — 1)1+ u Z bri(x — 1) 4 u? Z boi(x — 1)7,
i=1 i=0 i=0

where bo;, b1i,b2; € Fpm. Note that o — 1,u and u? are nilpotent in R;. It
follows that f(x) is not invertible if and only if byy = 0, and (u,z — 1) is
precisely the set of non-invertible elements of R;. Hence R; is a local ring with
the maximal ideal (u,z — 1). Suppose that u € (x —1). Then there must exist
f1(x), fa(z) € R[z] such that u = (z — 1)fi(z) + (27" — 1) f2(2). But this is
impossible because u = 0 of x = 1. Hence u ¢ (z — 1). Obviously, x — 1 ¢ (u),
because & — 1 has nilpotency index p* and u® = 0. Therefore, the maximal
ideal (u,x — 1) of Ry is not principal. It means R; is not a chain ring. (]

We can list all cyclic codes of length p® over R; as follows.
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Theorem 4.3. Cyclic codes of length p° over R, i.e., ideals of the ring Ry are

o Type 1: (0),(1).

o Type 2: I = (u?(x — 1)¥), where 0 < k < p* — 1.

o Type 3: I = (u(x —1)! + u? Zé;lo coj(x—1)7), where 0 <1< p*—1,¢c9; €
Fpm; or equivalently,I = (u(x — 1) +u?(z — 1)th(z)), where 0 <1 < p*—1,0 <
t <1, and either h(z) is 0 or h(z) is a unit where it can be represented as
h(z) =3, hj(x — 1) with hj € Fpm, and ho # 0.

o Type 4 : I = (u(x — 1) + u? Z}U;Ol coj(x — 1)7,u?(z — 1)), where 0 <
1 <p®—=1,c5 € Fpm,w <1 and w < T, where T 1is the smallest integer such
that u?(z —1)T € (u(x — 1)' +u? ZJ OCQJ(:C* 1)7); or equivalent, (u(x — 1) +

u?(x — 1)th(z),u(z — 1)* ), with h(z) as in Type 3, and deg(h) <w —t— 1.

o Type 5: I = {(x —1)" +u(z — 1)thi(z) + u?(x — 1)*h2(z)), where 0 < i <
p’P—1,0<t<4,0<z<iandhi(z ), 2(x) are similar to h( ) in Type 3.

e Type 6: I = {(z—1)"+ UZ?:Q c1j(x —1)7 + u? Z?:O coj(r — 1)7  u(x —
1)7 + u? Zq:é egj(x —1) '>, where 0 < i <p*—1,9<1i and C1J702j,€2j € Fpm

o Type 7: 1= {((xz—1) +UZJ o Loz —1) +u22j i Y eoj(z — 1) u(z —

1)¢ +u22j:0 eaj(x — 1), u?(x — 1)7), where 0 < i < p* — 1,0 < q <
1,C15,C2;5, €25 € Fpm, and T is the smallest integer such that u*(x — 1)T €
(u(z —1)9 + u? Z] 0 €2;(z —1)7) = (u(z — 1)1+ u?(z — 1)*h(x)), with h(z) as
in Type 3, and deg(h(x)) <w —z—1.

o Type8: 1= ((w—1)"+u D" coj(w—1) +u? Y775 coj(x—1)7, uP(@—=1)"),
where 0 < < p® -1, n <4, cgj,co5 € Fpm

Proof. Ideals of Type 1 are the trivial ideals. Consider an arbitrary nontrivial
ideal of R;.

Case 1. I C (u?). Any element of I must have the form u? Z’;;Bl boj(z—1)7,
where by; € Fpym. Let b € I be an element that has the smallest k such that
bax, # 0. Hence all elements a(z) € I have the form

a(z) = u?(z — 1)k Z (x—1)

j=k

which implies I C (u?(z — 1)¥). On the other hand, we have b € I with

p°—1 pS—1
b=u’(z—1)" Z boj(z — 1)77F = w?(z — 1)%(boy + Z boj(x —1)77F).
j=k j=k+1

As bop # 0, bog + ZJ k+1 boj(x — 1)77F is invertible, it follows that u?(z —
1)* € I. That is to say, the ideals of R; contained in (u?) are (u?(x — 1)),
0<k<p —1.
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Case 2. (u?) ¢ I C (u). Any element of I must have the form

p°—1
U Z eu x—1) Z (x —1)

=0 =0
and there exists a polynomial uzps__ol p1j(r —1)7 +u? Zps__ol egj(x —1)7 in [
such that Z 0 plj(x— 1)7 #0. Let M = {UZJ e elj(x— 1) +u22p !
eaj(x — 1) €I | Zj 0 Yeyj(z —1)7 # 0} and N = {u j 0162](90 — 1)
I| ey € Fpm}. We take § = min{deg(h(z)) | h(z) € M}. Suppose that
H = {h( e M | deg( (x)) = 6}. Then there is an element hy(z) =

uZ? Yhyj(z —1)7 + u? ?S:_Ol hoj(x — 1) in H that has the smallest [ such
that hll # 0. Hence we have

p°—1 p°—1
hie) =u(— D' (hy+ Y bz =177 +u? Y hyjw—1) € 1.
j=Il+1 Jj=0

Let ha(z) = (x — 1) (hy; + vl l+1 hij(z —1)77h) —l—uz th(.’L'—l)j. Then
hi(x) = uha(z). We now have two subcases.
Case 2a. N C (hy(z)). For any f( ) € M, obviously, f( ) can be written as

(@) =ufi(x), where fi(z) = Y0 ey;(x — 1) —|—qu o eaj(z —1)7. By the
Euclidean algorithm for finite commutative local rings, fi(x) can be written as

fi(x) = q(@)ha () + 7 (@),

where q(m),r( ) € Ry and r(z) = 0 or deg(r(x)) < deg(hi(z)). It implies that
ufi(x) = q(x)hi(x) + ur(z). Suppose that ur(z) ¢ N. Then ur(x) # 0. Hence

ur(z) = (z) q(z)h1(x) € M, which contradicts the assumption of hy(z).
Thus ur( ) € N. Therefore, I = (hy(x )) Because uhi(x) = u?(x — 1) [hy; +
ZJ l+1 hyj(z— 1)J 1€ Iand hllJrZ] l+1 hij(z—1)7~" is an invertible element
in Ry, it follows that u?(x — 1)! € I and

p°—1 -1
h(x) = u(z — 1)!(hy + Z hj(x — 1)) 4 u? Zhgj(a: —1)Y el
j=l+1 3=0

Thus ¢(z) = h(x)(hy + Zf ?411 j(x—1)"171 € I and ¢(x) can be expressed

as c(x) = u(zx — 1)! + u? ijo coj(x — 1), where coj € Fpm
Therefore,
-1
I={u(x-1) l+u2202j (x —1)7
7=0
Case 2b. N ¢ (h(x)) = (c(x)). For any n(z) € N, there exists the smallest
integer w such that n(x) = u?(z — 1)¥ny(z) for ni(x) € Ry. Obviously, u?(z —
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1)¥ € N, but w?(z —1)” ¢ (h(z)) = (¢(x)). Hence
-1
I = (u( l+u2202]z,1 u?(z — 1)),
7=0
Suppose that w > [. Then

-1
w(z — 1) = u(z — )Y ulz — 1) + u? ZCQj(x —1)7] € {c(z)),

which is a contradiction. Thus w < [. Hence

w—1

I'=(u(x—1)"+u>) ez — 1), u’(@—1)").
§=0
Let T be the smallest integer such that u?(x — 1)T € {¢(z)). If w > T, then
w?(x—1)* = (x—1)*"Tu2(z — 1)T € (c(z)), which contradicts the assumption
of u?(z — 1)* ¢ (c(z)). Hence w < T.
Case 3. I ¢ (u). Let I, denote the set of elements in I reduced modulo u.
Then I, is a nonzero ideal of the ring g‘;:i]). According to [5, Theorem 6.2],

it is a chain ring with ideals ((x — 1)7), where 0 < j < p°*. Hence there is an

integer i € {0,1,...,p* — 1} such that I, = ((x — 1)) C (F’;,T [11]>. Therefore,

there are two elements c;(z) = >27_ 61 c((f]) (z —1)7 + uyh_ 61 c% (x —1)7 +
QZP o 02]( 1)7 € Ry for i = 1,2 such that (z —1)* +ucy (z) +uca(z) € I,

where c((J]), c% ,c;]) € Fpm. Note that

(z —1)" 4+ ucy (:c) +u?co(x)

P
= (x—1) +UZCO] z71]+u22 (1)z71 +u220((§)z71

p®—1

= (x—1) Jrch((JE) )j+u2202j(x—1)j61,

where co; = c( ) + c(()l) and for all [ with i <1 <p°—1,

15
p°—1 p°—1
wa—1 =z -1 +u Y )@ +u? Y eyl — 1))@ 1) e L.
j=0 j=0

It follows that

s

i—1
(x —1)° JrchO] :C*].)j+u2202j($*1)j61.
=0
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Hence it can be assumed without loss of generality that c(z) = (z — 1)" +
UZ; Bc& (x — 1) +u? Z;;E coj(x —1)7 € I, where céy,c% € Fpm. We now
have two subcases.

Case 3a: I:((Jc—l)"—i—uzz Bc& (x — J-i—’LLQZ b coj(z —1)7). T can
be express as I = ((z — 1)" + u(z — 1)'hy(z) + u?(z — 1) ha(x)), such that
either hy(z), ho(x) are 0 or hi(x), ha(z) are units that can be represented as
hl(l') = Ej hlj(x — ].)j, hQ(ZL') = Zj hgj(.fC — ].)j, with hlj,th S Fpm, and
hio # 0, hao # 0. It means that I 1s in Type 5.

Case 3b: ((x — 1)" + UZJ OCOJ Nz — 1) + u? Z;;(l)cQj(x —1)/) ¢ I. For
every f(z) € I\ {(z —1)"+ UZJ o c&)(x — 1) +u? Z;;E coj(x —1)7), there is
a polynomial g(z) € Ry such that

0# hy(z) = f(z) — g(@)[(z = 1) +ud_ 5P (@ — 1) + 0> esj(a — 1)) € 1,
7=0 3=0

and hy(x) can be expressed as

i—1 i—1 i—1
ZL') = Zhoj(l‘ — ].)J +u2h1j(1' — 1)J +U22h2j(1' — ].)J S I
j=1 j=1 j=1

where hoj, h1j, haj € Fym. Now, hy¢(z) reduced modulo w is in I, = ((x—1)%) C
<11;sz[1}>’ and thus ho; = 0 for all 0 < j < i —1, ie., hf(z) = UZJ 1h13(

)/ +u? 3 h2g($ 1)? = uhy, (2) +-u’hy,, (z), where hy, (2) = 325 1Bz —
17, g, (@) = 30570 haj(a — 1))

Let My = {hf( ) = uhfu( ) +uths, (@) € T f eI\ {(=-1)+
wSmo ety (2= 1) +u? i 2y —1)), hy, (x) # 0} and Ny = {u?hy,, (x) €
I fel\{(@-1)+uYX e (@—1) +u> 30 Oczj(:cq) > hy, (z) = 0}.

Suppose that My # ®. We take ¢ = min{deg(hs(z)) | hs(z) € Mr}. It is
easy to prove that there is a polynomial hf(x) € My with deg(hs(x)) = < that
has the smallest ¢ such that hqq # 0. Hence we have

i—1 i—1
hy(z) = u(z — 1)9(hyg + Z hj(x —1)779) +u? Zﬁgj(x —1)Y el
i=at+1 i=0

Similarly with Case 2, we have

cr(z) =u(z —1)¢ —l—UQZegj(:E —-1)Y el

where g < 1.
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If Ny C (c¢(z)), then

qg—1
I= Z+UZCU =17 +u? ) cpi(x—1) u(z—1)1+u® Yy egj(x—1)7),
Jj=0 ] J

Q
_
Q
|
_

<
Il
=)
Il
o

where ¢ < i. Hence [ is in Type 6.

If Ny ¢ (cg(x)), then there exists the smallest integer o < i such that
hy,(x) = u?(x —1)%ny , (z) for any hy ,(x) € Ny. It is easy to verify that
u?(x —1)7 € Ny, but u?(z — 1)? ¢ (cf(z)). Hence

I={(x—1) +chlj(x— 1) +u2202j(x— 1),

q—1

u(z — 1) 4 u? Zegj(x — 1), u?(x —1)7).

Jj=0

Suppose that o > g. Then u?(z — 1)° € (cs(z)), which is a contradiction.
Hence o < g < i. Therefore,

o—1 o—1
I={(z-1) Jrchljx—l Z (x—1)
J=0 =0
u( Z (2 — 17, u?(x —1)7).
=0

Let T be the smallest integer such that u%(z — 1)7 € (u(z — 1)9 + u? Z;:Ol
e2j(w —1)7). If 0 > T, then u?(x — 1)° € (cg(x)), which is a contradiction.
Hence o < T, and therefore, I is in Type 7.

Suppose that My = ®. Then there exists the smallest integer i < ¢ such that
hy o (x) =u?(x—1)"hy , for any hy ,(z) € Nf It is easy to verify that u?(z —

)7 € Ng, but u?(z—1)" ¢ ((x—1)° +U2J OCOJ (m 1)J+u22j 002](30 1)%).
Hence

i—1 i—1
Iz((xfl)iJrché zflj+u22c2jzfl u?(x —1)7).
j=0 j=0
Therefore, I is in Type 8. (I

For cyclic codes of Types 4 and 7 according to the classification in the
Theorem 4.3, the number T plays a very important role. We now determine 7'
for Type 4 and 7.

Proposition 4.4. In Type 4, let T be the smallest integer such that u?(z—1)T
C = (u(x — 1) +u?(z — 1)th(z)). Then

T I, if h(z) =0,
| min{l,p* — 1 +t}, if h(z) #0,
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Proof. Firstly T <, because u?(z—1)" = ufu(z—1)"+u® 31 ' eoi(x—1)7] € C.
In case h(z) =0, C = (u(z — 1)!) and it implies T = [.

We consider the case h(x) # 0 and know h(z) is a unit. Because u?(z—1)T €
(u(x — 1)! + u?(x — 1)*h(x)), there exists f(x) € Ry such that u?(x — 1)T =
f@)u(z — 1) +u?(z — 1)*h(z)]. Writing f(z) as

s

p —1 p°—1 -
flx) = ap;(z — 1) +uZa1szl Z (x— 1)
3=0 3=0 =0

where ag;, a1;,a2; € Fpm, we have

w?(z —1)7T
p°—1 p°—1 p°—1
:[Zaoj(x—lj—i—uz:aljx—l +U2Za2]l'—1)]
7=0 7=0 7=0
[u(z — 1) 4+ u?(z — 1)'h(z)]
p’—1 p°-1
=u(w—1)" > agi(x— 1) +u* (@ —1)'h(z) Y a;(z — 1)’
J=0 Jj=0
p°—1
+u?(z — 1) ar;(z —1)
3=0
p°—l—1 p®—1
= u(x —1)! ap;j(x — 1) +u(z — 1) agj(z — 1)7+=p
j=0 j=p>=l
p—l—1 p'—1
+u?(z — 1) arj(z —1)7 +u*(x — 1)P Z ayj(x —1)7+=p
Jj=0 Jj=p*—l
p°—i—1 po—1
+u?(z — 1)*h(z) Z aoj(x — 1) +u?(z — 1)'h(x) Z ag;(x — 1)
Jj=0 Jj=p°—l
p—l—1
= u?(z — 1) Z aj(z — 1) +u?(x — )P ~Hh(z Zao pe—i4g(x —1)7.
=0

So T > min{l, p* — [ + t}. Moreover,
[u(@ — 1) +u?(z —1)th(z)] - (z — 1P 7 = w?(z — 1)P " Hh(z).

Hence u?(z — 1)P" =1 = [u(z — 1)} + u?(z — 1)th(z)]h " (z) € C. Thus T <
p® — 1+ t, which means that "= min{l, p* — [ + ¢}. O

Similarly, we can prove the following proposition.
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Proposition 4.5. In Type 7, we have
q, ifh(z)=0,
min{q,p® —q + 2}, if h(z) #O0.

5. ~«-constacyclic codes of length p® over R

In this section, we discuss the y-constacyclic codes by constructing a one-to-
one correspondence between cyclic and y-constacyclic code to apply our results
from Section 5 to «y-constacyclic code.

Since v is a nonzero element of the field Fy,m, there exists o such that 7} T =
y~1. Similarly with Proposition 6.1 of [7], we have the following proposition.
R[z]

zP® —1)

(Iﬁ[f]w given by f(x) — f(yox) is

a ring isomorphism. In particular, for A C <1R[x] B C R[I]W with ¥(A) =

e 1) = (zP®—
B. Then A is an ideal of @fii_]l) if and only if B is an ideal of %
Equivalently, A is a cyclic code of length p® over R if and only if B is a -

constacyclic code of length p® over R.

Proposition 5.1. The map 9 : T —

Using the isomorphism ), we can apply the results about cyclic code of
length p® over R in Section 4 to corresponding y-constacyclic codes of length p*
over R. Indeed, the results in Section 4 for cyclic codes hold with y-constacyclic
codes by replacing « by yoz and writing h(zx), hi(x) and ho(x) more explicitly.
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