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SOME CLASSES OF REPEATED-ROOT CONSTACYCLIC

CODES OVER Fpm + uFpm + u
2Fpm

Xiusheng Liu and Xiaofang Xu

Abstract. Constacyclic codes of length ps over R = Fpm + uFpm +

u2Fpm are precisely the ideals of the ring
R[x]

〈xps−1〉
. In this paper, we

investigate constacyclic codes of length ps over R. The units of the ring
R are of the forms γ, α+ uβ, α+ uβ+ u2γ and α+ u2γ, where α, β and
γ are nonzero elements of Fpm . We obtain the structures and Hamming
distances of all (α+uβ)-constacyclic codes and (α+uβ+u2γ)-constacyclic
codes of length ps over R. Furthermore, we classify all cyclic codes of
length ps over R, and by using the ring isomorphism we characterize
γ-constacyclic codes of length ps over R.

1. Introduction

Constacyclic codes over finite rings are an important class of codes from
both a theoretical and practical viewpoint. In the 1990s, it was shown that
certain good nonlinear binary codes can be constructed from cyclic codes over
Z4 via the Gray map [10]. Since then, constacyclic codes over finite chain
rings have been studied by many authors [8, 12, 17]. In these studies, the code
length n is relatively prime to the characteristic of the residue field of a finite
chain ring. The case when the code length n is divisible by the characteristics
p of the residue field of a finite chain ring yields the so-called repeated-root
codes, which were studied since 2003 by several authors such as Abualrub and
Oehmke [1], Blackford [2, 3], Noton and Sălăgean [14], Sălăgean [16], Ling
et al. [13], Zhu and Kai [18, 19]. In recent years, Dinh and Dougherty have
studied the description of several classes of constacyclic codes, such as cyclic
and negacyclic codes over various types of finite rings [4, 5, 6, 7, 8, 9]. In this
paper, we continue to study repeated-root constacyclic codes over the chain
ring Fpm + uFpm + u2Fpm .
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The paper is organized as follows. In Section 2, we will recall some no-
tations and properties about constacyclic codes over finite chain rings, and
the structure and Hamming distance of α-constacyclic codes of length ps over
Fpm , where α is a nonzero element of Fpm . Using the structure and Hamming
distances of constacyclic codes over Fpm , we investigate the structure and Ham-
ming distance of (α + uβ)-constacyclic codes and (α + uβ + u2γ)-constacyclic
codes of length ps over R = Fpm + uFpm + u2Fpm in Section 3. We show that

Rα+uβ = R[x]
〈xps

−(α+uβ)〉
or Rα+uβ+u2γ = R[x]

〈xps
−(α+uβ+u2γ)〉

is a finite chain ring

with maximal ideal of 〈α0x − 1〉, where α0 is completely determined by α, s
and m. In Section 4, we address the cyclic codes of length ps over R. These

cyclic codes are the ideals of the ring R1 = R[x]
〈xps

−1〉
, which is a local ring with

the maximal ideal 〈x − 1, u〉. We classify all such cyclic codes by categorizing
the ideals of the local ring R1 into 8 types, and provide a detailed structure of
ideals in each type. In the last section, we build a one-to-one correspondence
between cyclic and γ-constacyclic codes of length ps over R1 via the ring iso-
morphism ψ, which allows us to apply our results about cyclic codes in Section
4 to γ-constacyclic codes over R.

2. Preliminaries

Let Fpm be a finite field with pm elements, where p is a prime and m is
an integer number. Let R be the commutative ring Fpm + uFpm + u2Fpm =
{a + bu + cu2 | a, b, c ∈ Fpm} with u3 = 0. The ring R is a chain ring, it has
a unique maximal ideal 〈u〉 = {au | a ∈ Fpm}. A code of length n over R is
a nonempty subset of Rn, and a code is linear over R if it is an R-submodule
of Rn. Let C be a code of length n over R and P (C) be its polynomial
representation, i.e.,

P (C) = {
n−1
∑

i=0

cix
i | (c0, c1, . . . , cn−1) ∈ C}.

For a unit λ of R, the λ-constacyclic (λ-twisted) shift τλ on Rn is the shift

τλ(a0, a1, . . . , an−1) = (λan−1, a0, . . . , an−2).

A linear code C is said to be λ-constacyclic if τλ(C) = C, i.e., C is closed
under the λ-constacyclic shift τλ. In the case λ = 1, these λ-constacyclic codes
are called cyclic codes and in the case λ = −1, these λ-constacyclic codes are
called negacyclic codes. A code C of length n over R is λ-constacyclic if and

only if P (C) is an ideal of R[x]
〈xn

−λ〉
, and a code C of length n over R is cyclic

if and only if P (C) is an ideal of R[x]
〈xn

−1〉 , and a code C of length n over R is

negacyclic if and only if P (C) is an ideal of R[x]
〈xn+1〉 .

Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) ∈ Rn. The Euclidean
inner product or dot product of x and y in Rn is defined as x · y = x0y0 +
x1y1 + · · ·+ xn−1yn−1, where the operation is performed in R. The dual code
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of C is defined as C⊥ = {x ∈ Rn | x · y = 0, ∀y ∈ C}. A code C is called
self-orthogonal if C ⊆ C⊥, and it is called self-dual if C = C⊥. It is well known
that the dual of a λ-constacyclic code is a λ−1-constacyclic code [7].

The following equivalent conditions are known for the class of finite commu-
tative chain rings [8].

Proposition 2.1. Let R be a finite commutative ring. Then the following

conditions are equivalent:
(i) R is a local ring and the maximal ideal M of R is principal, i.e., M = 〈r〉

for some r ∈ R;
(ii) R is a local principal ideal ring;
(iii) R is a chain ring with ideals 〈ri〉, and |〈ri〉| = |R̄|N(r)−i, 0 ≤ i ≤ N(r),

where |R̄| = R
M

and N(r) is the nilpotency of r.

The following proposition can be found in [11, 15].

Proposition 2.2. Let p be a prime and R be a finite chain ring of size pα.
The number of codewords in any linear code C of length n over R is pk for

some integer k ∈ {0, 1, . . . , αn}. Moreover, the dual code C⊥ has pl codewords,
where k + l = αn, i.e., |C||C⊥| = |R|n.

Let λ be a nonzero element of the field Fpm . Let C be a λ-constacyclic code

of length ps over Fpm . Then λ−pm

= λ−1. By the division algorithm, there
exist nonnegative integers λq, λr such that s = λqm+ λr , where s,m > 0, 0 ≤

λr ≤ m− 1. Let λ0 = −λ−p(λq+1)m−s

= −λ−pm−λr
. Then λp

s

0 = −λ−p(λq+1)m

=
−λ−1. We will use the following.

Proposition 2.3 ([5, Theorem 4.11]). Let C be a λ-constacyclic code of length

ps over Fpm . Then C = 〈(λ0x + 1)i〉 ⊆
Fpm [x]

〈xps
−λ〉

for i ∈ {0, 1, . . . , ps}, and its

Hamming distance d(C) is completely determined by

d(C)=































1, if i = 0,

l + 2, if lps−1 + 1 ≤ i ≤ (l + 1)ps−1, where 0 ≤ l ≤ p− 2,

(t+ 1)pk, if ps − ps−k+(t− 1)ps−k−1+1 ≤ i ≤ ps − ps−k+tps−k−1,

where 1 ≤ t ≤ p− 1, and 1 ≤ k ≤ s− 1,

0, if i = ps.

3. (α + uβ) or (α + uβ + u
2
γ)-constacyclic codes of length p

s over

ring R

Let α, β and γ be nonzero elements of the field Fpm . Then α + uβ and
α+uβ+u2γ are units of R. The (α+uβ)-constacyclic codes of length ps over R

are ideals of the ring Rα+uβ = R[x]
〈xps

−(α+uβ)〉
, and the (α+uβ+u2γ)-constacyclic

codes of length ps over R are ideals of the ring Rα+uβ+u2γ = R[x]
〈xps

−(α+uβ+u2γ)〉
.

By the division algorithm, there exist nonnegative integers αq, αr such that
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s = αqm + αr, where 0 ≤ αr ≤ m − 1. Let α0 = α−p(αq+1)m−s

= α−pm−αr
.

Then αps

0 = α−p(αq+1)m

= α−1.

Lemma 3.1. In Rα+uβ or Rα+uβ+u2γ, 〈(α0x − 1)p
s

〉 = 〈u〉. In particular,

α0x− 1 is nilpotent in Rα+uβ or Rα+uβ+u2γ with nilpotency index 3ps.

Proof. If 1 ≤ i ≤ ps − 1, then p |
(

ps

i

)

.
(i) By computing in Rα+uβ ,

(α0x− 1)p
s

= (α0x)
ps

− 1 +

ps
−1

∑

i=1

(

ps

i

)

(α0x)
i(−1)p

s
−i

= α−1xp
s

− 1 = α−1(α + uβ)− 1 = uβα−1.

So 〈(α0x− 1)p
s

〉 = 〈u〉.
(ii) By computing in Rα+uβ+u2γ ,

(α0x− 1)p
s

= (α0x)
ps

− 1 +

ps
−1

∑

i=1

(

ps

i

)

(α0x)
i(−1)p

s
−i

= α−1xp
s

− 1 = α−1(α + uβ + u2γ)− 1

= uβα−1 + u2γα−1 = u(βα−1 + uγα−1).

So 〈(α0x− 1)p
s

〉 = 〈u〉.
The last statement is straightforward because u has nilpotency index 3 in

Rα+uβ or Rα+uβ+u2γ . �

Theorem 3.2. The ring Rα+uβ or Rα+uβ+u2γ is a chain ring whose ideal is

separately

Rα+uβ = 〈1〉 ! 〈α0x− 1〉 ! · · · ! 〈(α0x− 1)3p
s
−1〉 ! 〈(α0x− 1)3p

s

〉 = 〈0〉,

or

Rα+uβ+u2γ = 〈1〉 ! 〈α0x− 1〉 ! · · · ! 〈(α0x− 1)3p
s
−1〉 ! 〈(α0x− 1)3p

s

〉 = 〈0〉.

Proof. Let f(x) be an element in Rα+uβ or Rα+uβ+u2γ . Then f(x) can be
represented as

f(x) =

ps
−1

∑

i=0

a0i(α0x− 1)i + u

ps
−1

∑

i=0

a1i(α0x− 1)i + u2
ps

−1
∑

i=0

a2i(α0x− 1)i,

where a0i, a1i, a2i ∈ Fpm . By Lemma 3.1, u = (α0x − 1)p
s

αβ−1, so f(x) =
a00 + (α0x − 1)g(x) for some polynomial g(x) ∈ Rα+uβ or g(x) ∈ Rα+uβ+u2γ .
Because α0x−1 is nilpotent in Rα+uβ orRα+uβ+u2γ , f(x) is not invertible if and
only if a00 = 0. It is equivalent to the fact that f(x) is in 〈α0x− 1〉. Therefore,
Rα+uβ or Rα+uβ+u2γ is a local ring with maximal ideal 〈α0x− 1〉. That means
that Rα+uβ or Rα+uβ+u2γ is a chain ring whose ideals are 〈(α0x − 1)i〉, 0 ≤
i ≤ 3ps. �
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We have (α + uβ + u2γ)p
2m

= (αpm

)p
m

= αpm

= α, hence (α + uβ +

u2γ)p
2m

α−1 = 1. Therefore,

(α+ uβ + u2γ)−1 = (α+ uβ + u2γ)p
2m

−1α−1

= [(α+ uβ)p
m+1

−1 + (pm+1 − 1)(α+ uβ)p
m+1

−2u2γ]α−1

= [αp2m
−1 − uβαp2m

−2 +
(p2m − 1)(p2m − 2)

2
u2β2αp2m

−3

− (α+ uβ)p
2m

−2u2γ]α−1

= [1− uβα−1 − u2γα−1 + u2β2α−2]α−1

= α−1 − uβα−2 − u2(γα−2 − β2α−3).

This implies that if C = 〈(α0x − 1)i〉 is a (α+ uβ + u2γ)-constacyclic code of
length ps over R, then its dual C⊥ is a [α−1 − uβα−2 − u2(γα−2 − β2α−3)]-
constacyclic code of length ps over R. That means C⊥ is an ideal of the chain

ring Rα−1
−uβα−2

−u2(γα−2
−β2α−3) = R[x]

〈xps
−(α−1

−uβα−2
−u2(γα−2

−β2α−3))〉
. Since

|C| = pm(3ps
−i), it follows that |C⊥| = pmi and C⊥ = 〈(α−1

0 x − 1)3p
s
−i〉 ⊂

Rα−1
−uβα−2

−u2(γα−2
−β2α−3). We obtain the following theorem.

Theorem 3.3. For each (α + uβ + u2γ)-constacyclic code of length ps over

R, C = 〈(α0x− 1)i〉 ⊂ Rα+uβ+u2γ, its dual is the [α−1 − uβα−2 − u2(γα−2 −
β2α−3)]-constacyclic code

C⊥ = 〈(α−1
0 x− 1)3p

s
−i〉 ⊂ Rα−1

−uβα−2
−u2(γα−2

−β2α−3),

which contains pmi codewords.

Similarly, we have the following theorem.

Theorem 3.4. For each (α + uβ)-constacyclic code of length ps over R, C =
〈(α0x−1)i〉 ⊂ Rα+uβ , its dual is the (α

−1−uβα−2+u2β2α−3)-constacyclic code

C⊥ = 〈(α−1
0 x− 1)3p

s
−i〉 ⊂ Rα−1

−uβα−2+u2β2 , which contains pmi codewords.

In the following, we consider the Hamming distance of (α+uβ)-constacyclic
codes or (α+ uβ + u2γ)-constacyclic codes of length ps over R.

Theorem 3.5. Let C be a (α + uβ)-constacyclic code or (α + uβ + u2γ)-
constacyclic code of length ps over R. Then C = 〈(α0x − 1)i〉 ⊂ Rα+uβ or

Rα+uβ+u2γ for i ∈ {0, 1, 2, . . . , 3ps}, and the Hamming distance d(C) is com-

pletely determined by

d(C)=































1, if 0 ≤ i ≤ 2ps,

l + 2, if 2ps + lps−1 + 1 ≤ i ≤ 2ps+(l+ 1)ps−1, where 0≤ l≤ p− 2,

(t+1)pk, if 3ps − ps−k+(t−1)ps−k−1+1 ≤ i ≤ 3ps−ps−k+tps−k−1,

where 1 ≤ t ≤ p− 1, and 1 ≤ k ≤ s− 1,

0, if i = 3ps.
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Proof. By Lemma 3.1, 〈(α0x − 1)2p
s

〉 = 〈u2〉 in Rα+uβ or Rα+uβ+u2γ . We
consider the following two cases.

Case 1: 1 ≤ i ≤ 2ps. Then u2 ∈ 〈(α0x − 1)i〉, and thus 〈(α0x − 1)i〉 has a
Hamming distance of 1.

Case 2: 2ps+1 ≤ i ≤ 3ps−1. Then 〈(α0x−1)i〉 = 〈u2(α0x−1)i−2ps

〉, which
means that the codewords of the code 〈(α0x− 1)i〉 in Rα+uβ or Rα+uβ+u2γ are

precisely the codewords of the code 〈(α0x − 1)i−2ps

〉 in
Fpm [x]

〈xps
−α〉

, multiplied

with u, which have the same Hamming weights. Moreover, the codes 〈(α0x −

1)i−2ps

〉 in
Fpm [x]

〈xps
−α〉

are α-constacyclic codes of length ps over Fpm , with the

Hamming distance computed as Proposition 2.3. We complete the proof of the
theorem. �

4. Cyclic codes of length p
s over R

Cyclic codes of length ps over R are ideals of the residue ring R1 = R[x]
〈xps

−1〉
.

It is easy to prove the following lemma.

Lemma 4.1. The followings hold in R1:

(i) For any nonnegative integer t, (x− 1)p
t

= xp
t

− 1.
(ii) x− 1 is nilpotent with the nilpotency index ps.

Unlike Rα+uβ , the ring R1 is not a chain ring. It is a local ring whose
maximal ideal is not principal.

Proposition 4.2. The ring R1 is a local ring with the maximal ideal 〈u, x−1〉,
but it is not a chain ring.

Proof. Any f(x) ∈ R1 can be represented as

f(x) =

ps
−1

∑

i=0

b0i(x− 1)i + u

ps
−1

∑

i=0

b1i(x− 1)i + u2
ps

−1
∑

i=0

b2i(x− 1)i

= b00+ (x− 1)

ps
−1

∑

i=1

b0i(x− 1)i−1+ u

ps
−1

∑

i=0

b1i(x− 1)i+ u2
ps

−1
∑

i=0

b2i(x− 1)i,

where b0i, b1i, b2i ∈ Fpm . Note that x − 1, u and u2 are nilpotent in R1. It
follows that f(x) is not invertible if and only if b00 = 0, and 〈u, x − 1〉 is
precisely the set of non-invertible elements of R1. Hence R1 is a local ring with
the maximal ideal 〈u, x− 1〉. Suppose that u ∈ 〈x− 1〉. Then there must exist
f1(x), f2(x) ∈ R[x] such that u = (x − 1)f1(x) + (xp

s

− 1)f2(x). But this is
impossible because u = 0 of x = 1. Hence u /∈ 〈x− 1〉. Obviously, x− 1 /∈ 〈u〉,
because x − 1 has nilpotency index ps and u3 = 0. Therefore, the maximal
ideal 〈u, x− 1〉 of R1 is not principal. It means R1 is not a chain ring. �

We can list all cyclic codes of length ps over R1 as follows.
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Theorem 4.3. Cyclic codes of length ps over R, i.e., ideals of the ring R1 are

• Type 1 : 〈0〉, 〈1〉.
• Type 2 : I = 〈u2(x− 1)k〉, where 0 ≤ k ≤ ps − 1.

• Type 3 : I = 〈u(x− 1)l + u2
∑l−1

j=0 c2j(x− 1)j〉, where 0 ≤ l ≤ ps − 1, c2j ∈

Fpm ; or equivalently,I = 〈u(x− 1)l+u2(x− 1)th(x)〉, where 0 ≤ l ≤ ps− 1, 0 ≤
t < l, and either h(x) is 0 or h(x) is a unit where it can be represented as

h(x) =
∑

j hj(x− 1)j with hj ∈ Fpm , and h0 6= 0.

• Type 4 : I = 〈u(x − 1)l + u2
∑w−1

j=0 c2j(x − 1)j , u2(x − 1)w〉, where 0 ≤
l ≤ ps − 1, c2j ∈ Fpm , w < l and w < T , where T is the smallest integer such

that u2(x− 1)T ∈ 〈u(x− 1)l + u2
∑l−1

j=0 c2j(x− 1)j〉; or equivalent, 〈u(x− 1)l +

u2(x− 1)th(x), u(x− 1)w〉, with h(x) as in Type 3, and deg(h) ≤ w − t− 1.
• Type 5 : I = 〈(x− 1)i + u(x− 1)th1(x) + u2(x− 1)zh2(x)〉, where 0 ≤ i ≤

ps − 1, 0 ≤ t < i, 0 ≤ z < i and h1(x), h2(x) are similar to h(x) in Type 3.

• Type 6 : I = 〈(x − 1)i + u
∑q−1

j=0 c1j(x − 1)j + u2
∑q−1

j=0 c2j(x − 1)j , u(x −

1)q + u2
∑q−1

j=0 e2j(x− 1)j〉, where 0 ≤ i ≤ ps − 1, q ≤ i and c1j , c2j , e2j ∈ Fpm .

• Type 7 : I = 〈(x − 1)i + u
∑σ−1

j=0 c1j(x − 1)j + u2
∑σ−1

j=0 c2j(x − 1)j , u(x−

1)q + u2
∑σ−1

j=0 e2j(x − 1)j, u2(x − 1)σ〉, where 0 ≤ i ≤ ps − 1, σ < q ≤

i, c1j, c2j , e2j ∈ Fpm , and T is the smallest integer such that u2(x − 1)T ∈

〈u(x− 1)q + u2
∑q−1

j=0 e2j(x− 1)j〉 = 〈u(x− 1)q + u2(x− 1)zh(x)〉, with h(x) as
in Type 3, and deg(h(x)) ≤ w − z − 1.

• Type 8 : I = 〈(x−1)i+u
∑i−1

j=0 c0j(x−1)j+u2
∑η−1

j=0 c2j(x−1)j , u2(x−1)η〉,
where 0 ≤ i ≤ ps − 1, η < i, c0j , c2j ∈ Fpm .

Proof. Ideals of Type 1 are the trivial ideals. Consider an arbitrary nontrivial
ideal of R1.

Case 1. I ⊂ 〈u2〉. Any element of I must have the form u2
∑ps

−1
j=0 b2j(x−1)j ,

where b2j ∈ Fpm . Let b ∈ I be an element that has the smallest k such that
b2k 6= 0. Hence all elements a(x) ∈ I have the form

a(x) = u2(x− 1)k
ps

−1
∑

j=k

a2j(x − 1)j−k,

which implies I ⊂ 〈u2(x− 1)k〉. On the other hand, we have b ∈ I with

b = u2(x− 1)k
ps

−1
∑

j=k

b2j(x − 1)j−k = u2(x − 1)k(b2k +

ps
−1

∑

j=k+1

b2j(x− 1)j−k).

As b2k 6= 0, b2k +
∑ps

−1
j=k+1 b2j(x − 1)j−k is invertible, it follows that u2(x −

1)k ∈ I. That is to say, the ideals of R1 contained in 〈u2〉 are 〈u2(x − 1)k〉,
0 ≤ k ≤ ps − 1 .
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Case 2. 〈u2〉  I ⊂ 〈u〉. Any element of I must have the form

u

ps
−1

∑

j=0

e1j(x − 1)j + u2
ps

−1
∑

j=0

e2j(x− 1)j ,

and there exists a polynomial u
∑ps

−1
j=0 p1j(x− 1)j + u2

∑ps
−1

j=0 e2j(x− 1)j in I

such that
∑ps

−1
j=0 p1j(x − 1)j 6= 0. Let M = {u

∑ps
−1

j=0 e1j(x − 1)j + u2
∑ps

−1
j=0

e2j(x − 1)j ∈ I |
∑ps

−1
j=0 e1j(x − 1)j 6= 0} and N = {u2

∑ps
−1

j=0 e2j(x − 1)j ∈
I | e2j ∈ Fpm}. We take δ = min{deg(h(x)) | h(x) ∈ M}. Suppose that
H = {h(x) ∈ M | deg(h(x)) = δ}. Then there is an element h1(x) =

u
∑ps

−1
j=0 h1j(x − 1)j + u2

∑ps
−1

j=0 h2j(x − 1)j in H that has the smallest l such
that h1l 6= 0. Hence we have

h1(x) = u(x− 1)l(h1l +

ps
−1

∑

j=l+1

h1j(x− 1)j−l) + u2
ps

−1
∑

j=0

h2j(x− 1)j ∈ I.

Let h2(x) = (x− 1)l(h1l +
∑ps

−1
j=l+1 h1j(x− 1)j−l) + u

∑ps
−1

j=0 h2j(x− 1)j . Then

h1(x) = uh2(x). We now have two subcases.
Case 2a. N ⊂ 〈h1(x)〉. For any f(x) ∈M , obviously, f(x) can be written as

f(x) = uf1(x), where f1(x) =
∑ps

−1
j=0 e1j(x− 1)j + u

∑ps
−1

j=0 e2j(x− 1)j. By the

Euclidean algorithm for finite commutative local rings, f1(x) can be written as

f1(x) = q(x)h2(x) + r(x),

where q(x), r(x) ∈ R1 and r(x) = 0 or deg(r(x)) < deg(h1(x)). It implies that
uf1(x) = q(x)h1(x) + ur(x). Suppose that ur(x) /∈ N . Then ur(x) 6= 0. Hence
ur(x) = f(x) − q(x)h1(x) ∈ M , which contradicts the assumption of h1(x).
Thus ur(x) ∈ N . Therefore, I = 〈h1(x)〉. Because uh1(x) = u2(x − 1)l[h1l +
∑ps

−1
j=l+1 h1j(x−1)j−l] ∈ I and h1l+

∑ps
−1

j=l+1 h1j(x−1)j−l is an invertible element

in R1, it follows that u
2(x− 1)l ∈ I and

h̃(x) = u(x− 1)l(h1l +

ps
−1

∑

j=l+1

h1j(x− 1)j−l) + u2
l−1
∑

j=0

h2j(x− 1)j ∈ I.

Thus c(x) = h̃(x)(h1l +
∑ps

−1
j=l+1 h1j(x− 1)j−l)−1 ∈ I and c(x) can be expressed

as c(x) = u(x− 1)l + u2
∑l−1

j=0 c2j(x− 1)j , where c2j ∈ Fpm .
Therefore,

I = 〈u(x− 1)l + u2
l−1
∑

j=0

c2j(x − 1)j〉.

Case 2b. N * 〈h̃(x)〉 = 〈c(x)〉. For any n(x) ∈ N , there exists the smallest
integer w such that n(x) = u2(x− 1)wn1(x) for n1(x) ∈ R1. Obviously, u2(x−
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1)w ∈ N , but u2(x − 1)w /∈ 〈h̃(x)〉 = 〈c(x)〉. Hence

I = 〈u(x− 1)l + u2
l−1
∑

j=0

c2j(x− 1)j , u2(x− 1)w〉.

Suppose that w ≥ l. Then

u2(x− 1)w = u(x− 1)w−l[u(x− 1)l + u2
l−1
∑

j=0

c2j(x− 1)j] ∈ 〈c(x)〉,

which is a contradiction. Thus w < l. Hence

I = 〈u(x− 1)l + u2
w−1
∑

j=0

c2j(x− 1)j , u2(x− 1)w〉.

Let T be the smallest integer such that u2(x− 1)T ∈ 〈c(x)〉. If w ≥ T , then
u2(x− 1)w = (x− 1)w−Tu2(x− 1)T ∈ 〈c(x)〉, which contradicts the assumption
of u2(x− 1)w /∈ 〈c(x)〉. Hence w < T .

Case 3. I * 〈u〉. Let Iu denote the set of elements in I reduced modulo u.

Then Iu is a nonzero ideal of the ring
Fpm [x]

〈xps
−1〉

. According to [5, Theorem 6.2],

it is a chain ring with ideals 〈(x − 1)j〉, where 0 ≤ j ≤ ps. Hence there is an

integer i ∈ {0, 1, . . . , ps − 1} such that Iu = 〈(x − 1)i〉 ⊂
Fpm [x]

〈xps
−1〉

. Therefore,

there are two elements ci(x) =
∑ps

−1
j=0 c

(i)
0j (x − 1)j + u

∑ps
−1

j=0 c
(i)
1j (x − 1)j +

u2
∑ps

−1
j=0 c

(i)
2j (x−1)j ∈ R1 for i = 1, 2 such that (x−1)i+uc1(x)+u

2c2(x) ∈ I,

where c
(i)
0j , c

(i)
1j , c

(i)
2j ∈ Fpm . Note that

(x − 1)i + uc1(x) + u2c2(x)

= (x − 1)i + u

ps
−1

∑

j=0

c
(1)
0j (x− 1)j + u2

ps
−1

∑

j=0

c
(1)
1j (x− 1)j + u2

ps
−1

∑

j=0

c
(2)
0j (x− 1)j

= (x − 1)i + u

ps
−1

∑

j=0

c
(1)
0j (x− 1)j + u2

ps
−1

∑

j=0

c2j(x− 1)j ∈ I,

where c2j = c
(1)
1j + c

(1)
0j , and for all l with i ≤ l ≤ ps − 1,

u2(x− 1)l = u2[(x− 1)i+u

ps
−1

∑

j=0

c
(1)
0j (x− 1)j +u2

ps
−1

∑

j=0

c2j(x− 1)j ](x− 1)l−i ∈ I.

It follows that

(x− 1)i + u

ps
−1

∑

j=0

c
(1)
0j (x − 1)j + u2

i−1
∑

j=0

c2j(x− 1)j ∈ I.
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Hence it can be assumed without loss of generality that c(x) = (x − 1)i +

u
∑i−1

j=0 c
(1)
0j (x − 1)j + u2

∑i−1
j=0 c2j(x − 1)j ∈ I, where c

(1)
0j , c2j ∈ Fpm . We now

have two subcases.
Case 3a: I = 〈(x − 1)i + u

∑i−1
j=0 c

(1)
0j (x − 1)j + u2

∑i−1
j=0 c2j(x − 1)j〉. I can

be express as I = 〈(x − 1)i + u(x − 1)th1(x) + u2(x − 1)zh2(x)〉, such that
either h1(x), h2(x) are 0 or h1(x), h2(x) are units that can be represented as
h1(x) =

∑

j h1j(x − 1)j , h2(x) =
∑

j h2j(x − 1)j , with h1j, h2j ∈ Fpm , and
h10 6= 0, h20 6= 0. It means that I is in Type 5.

Case 3b: 〈(x − 1)i + u
∑i−1

j=0 c
(1)
0j (x − 1)j + u2

∑i−1
j=0 c2j(x − 1)j〉  I. For

every f(x) ∈ I \ 〈(x− 1)i + u
∑i−1

j=0 c
(1)
0j (x− 1)j + u2

∑i−1
j=0 c2j(x− 1)j〉, there is

a polynomial g(x) ∈ R1 such that

0 6= hf (x) = f(x)− g(x)[(x − 1)i + u

i−1
∑

j=0

c
(1)
0j (x − 1)j + u2

i−1
∑

j=0

c2j(x− 1)j ] ∈ I,

and hf (x) can be expressed as

hf (x) =
i−1
∑

j=1

h0j(x− 1)j + u
i−1
∑

j=1

h1j(x − 1)j + u2
i−1
∑

j=1

h2j(x− 1)j ∈ I,

where h0j , h1j , h2j ∈ Fpm . Now, hf (x) reduced modulo u is in Iu = 〈(x−1)i〉 ⊂
Fpm [x]

〈xps
−1〉

, and thus h0j = 0 for all 0 ≤ j ≤ i − 1, i.e., hf(x) = u
∑i−1

j=1 h1j(x −

1)j+u2
∑i−1

j=1 h2j(x−1)j = uhfu(x)+u
2hfu2

(x), where hfu(x) =
∑i−1

j=1 h1j(x−

1)j , hf
u2
(x) =

∑i−1
j=1 h2j(x− 1)j .

Let Mf = {hf(x) = uhfu(x) + u2hfu2
(x) ∈ I | f ∈ I \ 〈(x − 1)i +

u
∑i−1

j=0 c
(1)
0j (x−1)j+u2

∑i−1
j=0 c2j(x−1)j〉, hfu(x) 6= 0} and Nf = {u2hfu2

(x) ∈

I | f ∈ I \ 〈(x− 1)i + u
∑i−1

j=0 c
(1)
0j (x− 1)j + u2

∑i−1
j=0 c2j(x− 1)j〉, hfu(x) = 0}.

Suppose that Mf 6= Φ. We take ς = min{deg(hf (x)) | hf (x) ∈ Mf}. It is

easy to prove that there is a polynomial h̃f (x) ∈Mf with deg(h̃f (x)) = ς that

has the smallest q such that h̃1q 6= 0. Hence we have

h̃f (x) = u(x− 1)q(h̃1q +

i−1
∑

j=q+1

h̃1j(x − 1)j−q) + u2
i−1
∑

j=0

h̃2j(x− 1)j ∈ I.

Similarly with Case 2, we have

cf (x) = u(x− 1)q + u2
q−1
∑

j=0

e2j(x− 1)j ∈ I,

where q ≤ i.
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If Nf ⊂ 〈cf (x)〉, then

I = 〈(x−1)i+u

q−1
∑

j=0

c1j(x−1)j+u2
q−1
∑

j=0

c2j(x−1)j , u(x−1)q+u2
q−1
∑

j=0

e2j(x−1)j〉,

where q ≤ i. Hence I is in Type 6.
If Nf * 〈cf (x)〉, then there exists the smallest integer σ < i such that

hfu2
(x) = u2(x − 1)σnfu2

(x) for any hfu2
(x) ∈ Nf . It is easy to verify that

u2(x− 1)σ ∈ Nf , but u
2(x − 1)σ /∈ 〈cf (x)〉. Hence

I = 〈(x − 1)i + u

i−1
∑

j=0

c1j(x− 1)j + u2
i−1
∑

j=0

c2j(x− 1)j ,

u(x− 1)q + u2
q−1
∑

j=0

e2j(x − 1)j, u2(x− 1)σ〉.

Suppose that σ ≥ q. Then u2(x − 1)σ ∈ 〈cf (x)〉, which is a contradiction.
Hence σ < q ≤ i. Therefore,

I = 〈(x− 1)i + u

σ−1
∑

j=0

c1j(x− 1)j + u2
σ−1
∑

j=0

c2j(x− 1)j ,

u(x− 1)q + u2
σ−1
∑

j=0

e2j(x − 1)j, u2(x− 1)σ〉.

Let T be the smallest integer such that u2(x − 1)T ∈ 〈u(x− 1)q + u2
∑σ−1

j=0

e2j(x − 1)j〉. If σ ≥ T , then u2(x − 1)σ ∈ 〈cf (x)〉, which is a contradiction.
Hence σ < T , and therefore, I is in Type 7.

Suppose thatMf = Φ. Then there exists the smallest integer η < i such that

hf
u2
(x) = u2(x− 1)η h̃f

u2
for any hf

u2
(x) ∈ Nf . It is easy to verify that u2(x−

1)η ∈ Nf , but u
2(x−1)η /∈ 〈(x−1)i+u

∑i−1
j=0 c

(1)
0j (x−1)j+u2

∑i−1
j=0 c2j(x−1)i〉.

Hence

I = 〈(x − 1)i + u

i−1
∑

j=0

c
(1)
0j (x− 1)j + u2

i−1
∑

j=0

c2j(x− 1)i, u2(x− 1)η〉.

Therefore, I is in Type 8. �

For cyclic codes of Types 4 and 7 according to the classification in the
Theorem 4.3, the number T plays a very important role. We now determine T
for Type 4 and 7.

Proposition 4.4. In Type 4, let T be the smallest integer such that u2(x−1)T ∈
C = 〈u(x− 1)l + u2(x − 1)th(x)〉. Then

T =

{

l, if h(x) = 0,

min{l, ps − l + t}, if h(x) 6= 0,
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Proof. Firstly T ≤ l, because u2(x−1)l = u[u(x−1)l+u2
∑w−1

j=0 c2j(x−1)j ] ∈ C.

In case h(x) = 0, C = 〈u(x− 1)l〉 and it implies T = l.
We consider the case h(x) 6= 0 and know h(x) is a unit. Because u2(x−1)T ∈

〈u(x − 1)l + u2(x − 1)th(x)〉, there exists f(x) ∈ R1 such that u2(x − 1)T =
f(x)[u(x− 1)l + u2(x− 1)th(x)]. Writing f(x) as

f(x) =

ps
−1

∑

j=0

a0j(x− 1)j + u

ps
−1

∑

j=0

a1j(x− 1)j + u2
ps

−1
∑

j=0

a2j(x− 1)j ,

where a0j , a1j , a2j ∈ Fpm , we have

u2(x− 1)T

= [

ps
−1

∑

j=0

a0j(x− 1)j + u

ps
−1

∑

j=0

a1j(x− 1)j + u2
ps

−1
∑

j=0

a2j(x− 1)j ]

[u(x− 1)l + u2(x− 1)th(x)]

= u(x− 1)l
ps

−1
∑

j=0

a0j(x− 1)j + u2(x− 1)th(x)

ps
−1

∑

j=0

a0j(x− 1)j

+ u2(x− 1)l
ps

−1
∑

j=0

a1j(x − 1)j

= u(x− 1)l
ps

−l−1
∑

j=0

a0j(x− 1)j + u(x− 1)p
s

ps
−1

∑

j=ps
−l

a0j(x− 1)j+l−ps

+ u2(x− 1)l
ps

−l−1
∑

j=0

a1j(x− 1)j + u2(x− 1)p
s

ps
−1

∑

j=ps
−l

a1j(x− 1)j+l−ps

+ u2(x− 1)th(x)

ps
−l−1
∑

j=0

a0j(x− 1)j + u2(x− 1)th(x)

ps
−1

∑

j=ps
−l

a0j(x − 1)j

= u2(x− 1)l
ps

−l−1
∑

j=0

a1j(x− 1)j + u2(x − 1)p
s
−l+th(x)

l−1
∑

j=0

a0,ps
−l+j(x− 1)j .

So T ≥ min{l, ps − l+ t}. Moreover,

[u(x− 1)l + u2(x− 1)th(x)] · (x− 1)p
s
−l = u2(x− 1)p

s
−l+th(x).

Hence u2(x − 1)p
s
−l+t = [u(x − 1)l + u2(x − 1)th(x)]h−1(x) ∈ C. Thus T ≤

ps − l + t, which means that T = min{l, ps − l + t}. �

Similarly, we can prove the following proposition.
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Proposition 4.5. In Type 7, we have

T =

{

q, if h(x) = 0,

min{q, ps − q + z}, if h(x) 6= 0.

5. γ-constacyclic codes of length p
s over R

In this section, we discuss the γ-constacyclic codes by constructing a one-to-
one correspondence between cyclic and γ-constacyclic code to apply our results
from Section 5 to γ-constacyclic code.

Since γ is a nonzero element of the field Fpm , there exists γ0 such that γp
s

0 =
γ−1. Similarly with Proposition 6.1 of [7], we have the following proposition.

Proposition 5.1. The map ψ : R[x]
〈xps

−1〉
→ R[x]

〈xps
−γ〉

given by f(x) 7→ f(γ0x) is

a ring isomorphism. In particular, for A ⊆ R[x]
〈xps

−1〉
, B ⊆ R[x]

〈xps
−γ〉

with ψ(A) =

B. Then A is an ideal of
R[x]

〈xps
−1〉

if and only if B is an ideal of
R[x]

〈xps
−γ〉

.

Equivalently, A is a cyclic code of length ps over R if and only if B is a γ-
constacyclic code of length ps over R.

Using the isomorphism ψ, we can apply the results about cyclic code of
length ps over R in Section 4 to corresponding γ-constacyclic codes of length ps

over R. Indeed, the results in Section 4 for cyclic codes hold with γ-constacyclic
codes by replacing x by γ0x and writing h(x), h1(x) and h2(x) more explicitly.
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[8] H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain

rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728–1744.
[9] S. T. Dougherty and S. Ling, Cyclic codes over Z4 of even length, Des. Codes Cryptogr.

39 (2006), no. 2, 127–153.
[10] A. R. Hammous, Jr., P. V. Kumar, A. R. Calderbark, J. A. Sloame, and P. Solé, The
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