DOI QR코드

DOI QR Code

LINEAR OPERATORS THAT PRESERVE SETS OF PRIMITIVE MATRICES

  • Beasley, Leroy B. (Department of Mathematics and Statistics Utah State University) ;
  • Kang, Kyung-Tae (Department of Mathematics Jeju National University) ;
  • Song, Seok-Zun (Department of Mathematics and Research Institute for Basic Sciences Jeju National University)
  • Received : 2013.11.20
  • Published : 2014.07.01

Abstract

We consider linear operators on square matrices over antinegative semirings. Let ${\varepsilon}_k$ denote the set of all primitive matrices of exponent k. We characterize those linear operators which preserve the set ${\varepsilon}_1$ and the set ${\varepsilon}_2$, and those that preserve the set ${\varepsilon}_{n^2-2n+2}$ and the set ${\varepsilon}_{n^2-2n+1}$. We also characterize those linear operators that strongly preserve ${\varepsilon}_2$, ${\varepsilon}_{n^2-2n+2}$ or ${\varepsilon}_{n^2-2n+1}$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. L. B. Beasley and A. E. Guterman, Operators preserving primitivity for matrix pairs, Matrix methods: theory, algorithms and applications, World Sci. Publ., Hackensack, NJ, 2-19, 2010.
  2. L. B. Beasley and A. E. Guterman, The characterization of operators preserving primitivity for matrix k-tuples, Linear Algebra Appl. 430 (2009), no. 7, 1762-1777. https://doi.org/10.1016/j.laa.2008.06.031
  3. L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77. https://doi.org/10.1016/0024-3795(84)90158-7
  4. L. B. Beasley and N. J. Pullman, Term-rank, permanent, and rook-polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46. https://doi.org/10.1016/0024-3795(87)90302-8
  5. L. B. Beasley and N. J. Pullman, Linear operators that strongly preserve primitivity, Linear and Multilinear Algebra 25 (1989), no. 3, 205-213. https://doi.org/10.1080/03081088908817942
  6. L. B. Beasley and N. J. Pullman, Linear operators that strongly preserve the index of imprimitivity, Linear and Multilinear Algebra 31 (1992), no. 1-4, 267-283. https://doi.org/10.1080/03081089208818139
  7. R. Brualdi and H. Ryser, Combinatorial Matrix Theory, Cambridge University Press, New York, 1991.
  8. A. L. Dulmadge and N. S. Mendelsohn, The exponents of incident matrices, Duke Math. J. 31 (1964), 575-584. https://doi.org/10.1215/S0012-7094-64-03156-4
  9. G. Frobenius, Uber die Darstellung der entlichen Gruppen durch Linear Substitutionen, S. B. Deutsch. Akad. Wiss. Berlin (1897), 994-1015.
  10. J. C. Holladay and R. S. Varga, On powers of non-negative matrices, Proc. Amer. Math. Soc. 9 (1985), 631-634.
  11. M. Lewin and Y. Vitek, A system of gaps in the exponent set of primitive matrices, Illinois J. Math. 25 (1981), no. 1, 87-98.
  12. C.-K. Li and S. J. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), no. 7, 591-605. https://doi.org/10.2307/2695268
  13. B. Liu, On the bounds of exponents of primitive (0, 1) matrices, Southeast Asia Bull. Math. 22 (1998), no. 1, 57-65.
  14. S. J. Pierce, et al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), no. 1-2, 1-129. https://doi.org/10.1080/03081089208818176
  15. H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642-648. https://doi.org/10.1007/BF02230720