DOI QR코드

DOI QR Code

Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam

  • Pham, C.H. (Ministry of Agriculture and Rural Development, National Institute of Animal Sciences) ;
  • Vu, C.C. (Ministry of Agriculture and Rural Development, National Institute of Animal Sciences) ;
  • Sommer, S.G. (Institute of Chemical Engineering, Bio- and Environmental Engineering, Faculty of Engineering, University of Southern) ;
  • Bruun, S. (Department of Plant and Environment, Faculty of Science, University of Copenhagen)
  • Received : 2013.08.28
  • Accepted : 2014.01.27
  • Published : 2014.07.01

Abstract

This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature ($^{\circ}C$) at a depth of 140 cm and 180 cm, biogas production and methane ($CH_4$) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank.

Keywords

References

  1. Bhattacharya, S. C. and C. Jana. 2009. Renewable energy in India: Historical developments and prospects. Energy 34:981-991. https://doi.org/10.1016/j.energy.2008.10.017
  2. Bruun, S., L. S. Jensen, T. K. V. Vu, and S. G. Sommer. 2014. Small-scale household biogas digesters: An option for global warming mitigation or a potential climate bomb? Renew. Sust. Energy Rev. 33:736-741. https://doi.org/10.1016/j.rser.2014.02.033
  3. Chen, Y. R. and A. G. Hashimoto. 1978. Kinetics of methane fermentation. Biotech. Bioeng. Symp. 8:269-282.
  4. Cu, T. T. T., H. C. Pham, T. H. Le, V. C. Nguyen, X. A. Le, X. T. Nguyen, and S. G. Sommer. 2012. Manure management practices on biogas and non-biogas pig farms in developing countries - using livestock farms in Vietnam as an example. J. Clean. Prod. 27:64-71. https://doi.org/10.1016/j.jclepro.2012.01.006
  5. Garfi, M., L. Ferrer-Marti, I. Perez, X. Flotats, and I. Ferrer. 2011. Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecol. Eng. 37:2066-2070. https://doi.org/10.1016/j.ecoleng.2011.08.018
  6. Gautam, R., S. Baral, and S. Heart. 2009. Biogas as a sustainable energy source in Nepal: Present status and future challenges. Renew. Sustain. Energy Rev. 13:248-252. https://doi.org/10.1016/j.rser.2007.07.006
  7. Gavala, H., I. Angelidaki, and B. Ahring. 2003. Kinetics and modeling of anaerobic digestion process. In: Biomethanation I (Eds. B. Ahring, I. Angelidaki, E. C. Macario, H. N. Gavala, J. Hofman-Bang, A. J. I. Macario, S. J. W. H. O. Elferink, L. Raskin, A. J. M. Stams, P. Westermann, and D. Zheng). Springer, Berlin Heidelberg, Germany. pp. 81:57-93. https://doi.org/10.1007/3-540-45839-5_3
  8. Grau, P., M. Dohanyos, and J. Chudoba. 1975. Kinetics of multicomponent substrate removal by activated sludge. Water. Res. 9:637-642. https://doi.org/10.1016/0043-1354(75)90169-4
  9. Hansen, T. L., S. G. Sommer, S. Gabriel, and H. T. Christensen. 2006. Methane production during storage of anaerobically digested municipal organic waste. J. Environ. Qual. 35:830-836. https://doi.org/10.2134/jeq2005.0239
  10. Hillel, D. 1982. Introduction to Soil Physics. Academic Press, San Diego, CA, USA.
  11. Hill, D. T. 1984. Methane productivity of the major animal waste types. Trans. ASAE. 27:530-534. https://doi.org/10.13031/2013.32822
  12. Hobson, P. N., S. Bousfield, R. Summers, and P. J. Mills. 1980. Anaerobic digestion of piggery and poultry wastes. In: Anaerobic digestion (Eds. B. E. Stafford, B. I. Wheatley, and D. E. Hughes). Applied Science Publishers, London.
  13. Huixian, S. H. I., P. E. I. Xiaomei, Z. H. U. Hongguang, L. U. O. Zhongyang, W. A. N. G. Tao, R. O. N. G. Ling, and L. I. Yongming. 2009. How to compensate the lost temperature of the digester in cold climate. Proceedings of the international conference on power engineering 09 (ICOPE-09) November 16-20, 2009; Kobe, Japan. pp.185-190.
  14. IPCC. 1997. Guidelines for national greenhouse gas inventories: reference manual. Revised 1996. IPCC Guidelines.
  15. Jiang, X., S. G. Sommer, and K. V. Christensen. 2011. A review of the biogas industry in China. Energy Policy 39:6073-6081. https://doi.org/10.1016/j.enpol.2011.07.007
  16. Kalia, A. K. and S. P. Singh. 1998. Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour. Technol. 64:63-66. https://doi.org/10.1016/S0960-8524(97)00159-4
  17. Kalia, A. K. and S. S. Kanwar. 1998. Long term evaluation of a fixed dome Janata biogas plant in hilly conditions. Bioresour. Technol. 65:61-63. https://doi.org/10.1016/S0960-8524(98)00021-2
  18. Katterer, T. and O. Andren. 2009. Predicting daily soil temperature profiles in arable soils in cold temperature regions from air temperature and leaf area index. Acta Agriculturae Scandinavica Section B Soil Plant Sci. 59:77-86.
  19. Khoiyangbam, R. S., S. Kumar, M. C. Jain, N. Gupta, A. Kumar, and V. Kumar. 2004. Methane emission from fixed dome biogas plants in hilly and plain regions of northern India. Bioresour. Technol. 95:35-39. https://doi.org/10.1016/j.biortech.2004.02.009
  20. Kossmann, W., U. Ponitz, and S. Habermehl. 1997. Biogas digest: Biogas application and product development (Volume II). Information and Advisory Service on Appropriate Technology (ISAT) & GATE in Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ).
  21. Lahav, O., B. E. Morgan, and R. E. Loewenthal. 2002. Rapid, simple and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environ. Sci. Technol. 36:2736-2741. https://doi.org/10.1021/es011169v
  22. Ma, J., L. Yu, C. Frear, Q. Zhao, X. Li, and S. Chen. 2013. Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure. Bioresour. Technol. 131:6-12. https://doi.org/10.1016/j.biortech.2012.11.147
  23. Marti-Herrero, J. 2007. Transfer of low-cost plastic biodigester technology at household level in Bolivia. Livest. Res. Rural. Dev. 19(12). http://www.lrrd.org/lrrd19/12/mart19192.htm Accessed August 28, 2013.
  24. Moller, H. B., S. G. Sommer, and B. K. Ahring. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485-495. https://doi.org/10.1016/j.biombioe.2003.08.008
  25. Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3:371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103
  26. Nguyen, D. L., T. K. Nguyen, and K. Q. Nguyen. 2010. Questions and answers about biogas technologies. Vietnam Agric. Publishing House.
  27. Park, K. H. and C. W. Riddle. 2010. Methane emission patterns from stored liquid wwine manure. Asian Australas. J. Anim. Sci. 23:1229-1235. https://doi.org/10.5713/ajas.2010.90536
  28. Perrigault, T., V. Weatherford, J. Marti-Herrero, and D. Poggio. 2012. Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model. Bioresour. Technol. 124:259-268. https://doi.org/10.1016/j.biortech.2012.08.019
  29. Pham, C. H., J. M. Triolo, and S. G. Sommer. 2013. Models for predicting methane production in simple and unheated biogas digesters. Applied Energy (Submitted).
  30. Rehm, H. J., G. Reed, A. Puhler, and P. J. W. Stadler. 2000. Biotechnology, vol. 11A: Environmental processes I, 2nd ed., Wiley, New York, USA.
  31. Singh, J. B., M. R. Myles, and A. Dhussa. 1987. Manual on Deenbandhu Biogas Plant. Tata McGraw-Hill. New Delhi, India.
  32. Sodha, M. S., S. Ram, N. K. Bansal, and P. K. Bansal. 1987. Effect of PVC greenhouse in increasing the biogas production in temperature cold climate conditions. Energy Convers. Manag. 27:83-90. https://doi.org/10.1016/0196-8904(87)90057-4
  33. Sommer, S. G., S. O. Petersen, O. Sorensen, H. D. Poulsen, and H. B. Moller. 2007. Methane and carbon dioxide emissions and nitrogen turn-over during liquid manure storage. Nutr. Cycl. Agroecosyst. 78:27-36. https://doi.org/10.1007/s10705-006-9072-4
  34. Wu, B. and E. L. Bibeau. 2006. Development of 3-D anaerobic digester heat transfer model for cold weather applications. Trans. ASABE 49:749-757. https://doi.org/10.13031/2013.20482
  35. Yu, L., K. Yaoqiu, H. Ningsheng, W. Zhifeng, and X. Lianzhong. 2008. Popularizing house-house scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation. Renew. Energy 33:2027-2035. https://doi.org/10.1016/j.renene.2007.12.004
  36. Zar. J. H. 1984. Biostatistical Analysis, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ, USA.
  37. Zhang, L. Z. Yang, B. Chen, and G. Chen. 2009. Rural energy in China: pattern and policy. Renew. Energy 34:2813-2823. https://doi.org/10.1016/j.renene.2009.04.006

Cited by

  1. Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam vol.11, pp.7, 2018, https://doi.org/10.3390/en11071794
  2. MODELING OF ENVIRONMENTAL-ENERGY EFFICIENCY OF THE BIOGAS INSTALLATION WITH HEAT SUPPLYING OF THE BIOMASS FERMENTATION PROCESS vol.13, pp.4, 2014, https://doi.org/10.21307/acee-2020-036
  3. Performance of Experimental Bio-Digestion for Pathological and Biodegradable Waste Management at Mwananyamala Regional Referral Hospital Tanzania vol.11, pp.10, 2020, https://doi.org/10.4236/jep.2020.1110052
  4. Comparative Study on the Performance of Aboveground and Underground Fixed‐Dome Biogas Digesters vol.43, pp.1, 2014, https://doi.org/10.1002/ceat.201900378
  5. The effect of temperature fluctuation on the microbial diversity and community structure of rural household biogas digesters at Qinghai Plateau vol.202, pp.3, 2014, https://doi.org/10.1007/s00203-019-01767-0
  6. In Situ Sonification of Anaerobic Digestion: Extended Evaluation of Performance in a Temperate Climate vol.13, pp.20, 2014, https://doi.org/10.3390/en13205349
  7. Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects vol.13, pp.22, 2014, https://doi.org/10.3390/en13226058
  8. An overview of fungal pretreatment processes for anaerobic digestion: Applications, bottlenecks and future needs vol.321, pp.None, 2021, https://doi.org/10.1016/j.biortech.2020.124397
  9. Evaluating the scientific contributions of biogas technology on rural development through scientometric analysis vol.24, pp.None, 2014, https://doi.org/10.1016/j.eti.2021.101879