DOI QR코드

DOI QR Code

Effects of Acanthopanax senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of Pro-inflammatory Cytokines Genes in Challenged Weaned Piglets

  • Han, Jie (College of Animal Science and Veterinary Science, Shenyang Agricultural University) ;
  • Bian, Lianquan (College of Animal Science and Veterinary Science, Shenyang Agricultural University) ;
  • Liu, Xianjun (College of Animal Science and Veterinary Science, Shenyang Agricultural University) ;
  • Zhang, Fei (College of Animal Science and Veterinary Science, Shenyang Agricultural University) ;
  • Zhang, Yiran (College of Animal Science and Veterinary Science, Shenyang Agricultural University) ;
  • Yu, Ning (Liaoning Academy of Agricultural Sciences)
  • Received : 2013.07.31
  • Accepted : 2014.03.04
  • Published : 2014.07.01

Abstract

To investigate the effect of dietary Acanthopanax senticosus polysaccharide (ASPS) on growth performance, immunity, blood parameters and mRNA expression of pro-inflammatory cytokines in immunologically challenged piglets, an experiment employing $2{\times}2$ factorial arrangement concerning dietary ASPS treatment (0 or 800 mg/kg) and immunological challenge (lipopolysaccharide [LPS] or saline injection) was conducted with 64 crossbred piglets (weaned at 28 d of age, average initial body weight of $7.25{\pm}0.21kg$) assigned to two dietary ASPS treatments with 8 replicates of 4 pigs each. Half of the piglets of per dietary treatment were injected with LPS or saline on d 14. Blood samples were obtained at 3 h after immunological injection on d 14 and piglets were slaughtered to obtain spleen samples on d 21. Dietary ASPS did not affect average daily gain (ADG) (p = 0.634), average daily feed intake (ADFI) (p = 0.655), and gain:feed (p = 0.814) prior to LPS challenge. After LPS challenge, for LPS-challenged pigs those fed ASPS had higher ADG and ADFI than the non-supplemented group (p<0.05), and an interaction between $LPS{\times}ASPS$ was observed on the two indices (p<0.05). Dietary ASPS improved lymphocyte proliferation among saline-injected and LPS-injected pigs (p<0.05). Interaction between $LPS{\times}ASPS$ was also revealed on lymphocyte proliferation (p<0.05). Circulatory concentration of IgG was influenced neither by ASPS (p = 0.803) or LPS (p = 0.692), nor their interaction (p = 0.289). Plasma concentration and spleen mRNA expression of interleukin-1beta (IL-$1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-${\alpha}$ were induced to increase (p<0.05) by LPS challenge, in contrast, these indices were decreased by dietary ASPS (p<0.05), and interactions were found on these cytokines (p<0.05). For LPS-challenged pigs, dietary ASPS also reduced the circulating concentration and spleen mRNA expression of IL-$1{\beta}$, IL-6 as well as TNF-${\alpha}$ (p<0.05). The interaction between $LPS{\times}ASPS$ was also observed on the circulating concentration of insulin-like growth factor-I, ${\alpha}$-acid glycoprotein (${\alpha}$-AGP), nonesterified fatty acid, and glucose (p<0.05). The results of this study demonstrate that dietary ASPS can modulate the release of pro-inflammatory cytokines during immunological challenge, which might enable piglets to achieve better growth performance.

Keywords

References

  1. Blecha, F. and B. Charley. 1990. Rationale for using immunpotentiators in domestic food animals. In Immunomodulation in Domestic Food Animals (Ed. F. Blecha and B. Charley). Academic Press, San Diego, CA. pp. 3-19.
  2. Chen, H. L., D. F. Li, B. Y. Chang, L. M. Gong, J. G. Dai, and G. F. Yi. 2003. Effects of Chinese herbal polysaccharides on the immunity and growth performance of young broilers. Poult. Sci. 82:364-370. https://doi.org/10.1093/ps/82.3.364
  3. Chen, R. Z., Z. Q. Liu, J. M. Zhao, R. P. Chen, F. L. Meng, M. Zhang, and W. C. Ge. 2011. Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosus. Food Chem. 127:434-440. https://doi.org/10.1016/j.foodchem.2010.12.143
  4. Deyama, T., S. Nishibe, and Y. Nakazawa. 2001. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta. Pharmacol. Sin. 22:1057-1070.
  5. DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  6. Elsasser, T. H., T. S. Rumsey, A. C. Hammond, and R. Fayer. 1988. Influence of parasitism on plasma concentrations of growth hormone, somatomedin-C, and somatomedin binding proteins in calves. J. Endocrinol. 116:191-200. https://doi.org/10.1677/joe.0.1160191
  7. Fan, J., M. M. Wojnar, M. Theodorakis, and C. H. Lang. 1996. Regulation of insulin-like growth factor (IGF)-I mRNA and peptide and IGF-binding proteins by interleukin-1. Am. J. Physiol. 270:R621-R629.
  8. Fang, J., F. Y. Yan, X. F. Kong, Z. Ruan, Z. Q. Liu, R. L. Huang, T. J. Li, M. M. Geng, F. Yang, Y. Z. Zhang, P. Li, Joshua Gong, G. Y. Wu, M. Z. Fan, Y. L. Liu, Y. Q. Hou, and Y. L. Yin. 2009. Dietary supplementation with Acanthopanax senticosus extract enhances gut health in weanling piglets. Livest. Sci. 123:268-275. https://doi.org/10.1016/j.livsci.2008.11.020
  9. Guo, G. L., Y. L. Liu, W. Fan, J. Han, Y. Q. Hou, Y. L. Yin, H. L. Zhu, B. Y. Ding, J. X. Shi, J. L. Lu, H. R. Wang, J. Chao, and Y. H. Qu. 2008. Effects of Achyranthes Bidentata polysaccharide on growth performance, immunological, adrenal, and somatotropic responses of weaned pigs challenged with Escherichia coli lipopolysaccharide. Asian Australas. J. Anim. Sci. 21:1189-1195. https://doi.org/10.5713/ajas.2008.70739
  10. Han, J., L. Q. Bian, X. J. Liu, F. Zhang, and K. K. Yang. 2012a. Effects of dietary Acanthopanax senticosus polysaccharide on growth performance and immune parameters of weaner piglets. Chin. J. Anim. Nutr. 24: 2203-2209.
  11. Han, J., L. Q. Bian, X. J. Liu, F. Zhang, and K. K. Yang. 2012b. Effects of dietary Acanthopanax senticosus polysaccharide on immune parameters in blood of weaner piglets. Chin. J. Anim. Nutr. 24:2444-2449.
  12. Han, S. B., Y. D. Yoon, H. J. Ahn, H. S. Lee, C. W. Lee, W. K. Yoon, S. K. Park, and H. M. Kim. 2003. Toll-like receptormediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int. lmmunopharmacol. 3:1301-1312. https://doi.org/10.1016/S1567-5769(03)00118-8
  13. Hevener, W., G. W. Almond, J. D. Armstrong, and R. G. Richards. 1997. Effects of acute endotoxemia on serum somatotropin and insulin-like growth factor I concentrations in prepubertal gilts. Am. J. Vet. Res. 58:1010-1013.
  14. Johnson, R. W. and E. Von Borell. 1994. Lipopolysaccharideinduced sickness behavior in pigs is inhibited by pretreatment with indomethacin. J. Anim. Sci. 72:309-314.
  15. Johnson, R. W. 1997. Inhibition of growth by pro-inflammatory cytokines: an integrated view. J. Anim. Sci. 75:1244-1255.
  16. Kelley, K. W., R. W. Johnson, and R. Dantzer. 1994. Immunology discovers physiology. Vet. Immunol. Immunopathol. 43:157-165. https://doi.org/10.1016/0165-2427(94)90132-5
  17. Klasing, K. C. and B. J. Johnstone. 1991. Monokines in growth and development. Poult. Sci. 70:1781-1789. https://doi.org/10.3382/ps.0701781
  18. Klasing, K. C. 1988. Nutritional aspects of leukocytic cytokines. J. Nutr. 118:1436-1446.
  19. Klasing, K. C., D. E. Laurin, R. K. Peng, and D. M. Fry. 1987. Immunologically mediated growth depression in chicks: Influence of feed intake, corticosterone and interleukin-1. J. Nutr. 117:1629-1637.
  20. Kong, X. F., Y. L.Yin, G. Y. Wu, H. J. Liu, F. G. Yin, T. J. Li, R. L. Huang, Z. Ruan, H. Xiong, Z. Y. Deng, M. Y. Xie, Y. P. Liao, and S. W. Kim. 2007a. Dietary supplementation with Acanthopanax senticosus extract modulates cellular and humoral immunity in weaned piglets. Asian Australas. J. Anim. Sci. 20:1453-1461. https://doi.org/10.5713/ajas.2007.1453
  21. Kong, X. F., Y. L. Yin, Q. H. He, F. G. Yin, H. J. Liu, T. J. Li, R. L. Huang, M. M. Geng, Z. Ruan, Z. Y. Deng, M. Y. Xie, and G. Wu. 2008. Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids. 37:573-582.
  22. Kong, X. F., G. Y. Wu, Y. P. Liao, Z. P. Hou, H. J. Liu, F. G. Yin, T. J. Li, R. L. Huang, Y. M. Zhang, D. Deng, P. Kang, R. X. Wang, Z. Y. Tang, C. B. Yang, Z. Y. Deng, H. Xiong, W. Y. Chu, Z. Ruan, M. Y. Xie, and Y. L. Yin. 2007b. Effects of Chinese herbal ultra-fine powder as a dietary additive on growth performance, serum metabolites and intestinal health in early-weaned piglets. Livest. Sci. 108:272-275. https://doi.org/10.1016/j.livsci.2007.01.079
  23. Kong, X. F., F. G. Yin, Q. H. He, H. J. Liu, T. J. Li, R. L. Huang, M. Z. Fan, Y. L. Liu, Y. Q. Hou, P. Li, Z. Ruan, Z. Y. Deng, M. Y. Xie, H. Xiong, and Y. L. Yin. 2009a. Acanthopanax senticosus extract as a dietary additive enhances the apparent ileal digestibility of amino acids in weaned piglets. Livest. Sci. 123:261-267. https://doi.org/10.1016/j.livsci.2008.11.015
  24. Kong, X. F., Y. Z. Zhang, Y. L. Yin, G. Y. Wu, H. J. Zhou, Z. L. Tan, F. Yang, M. J. Bo, R. L. Huang, T. J. Li, and M. M. Geng. 2009b. Chinese Yam polysaccharide enhances growth performance and cellular immune response in weanling rats. J. Sci. Food Agric. 89:2039-2044. https://doi.org/10.1002/jsfa.3688
  25. Lai, C. H., J. D. Yin, D. F. Li, L. D. Zhao, S. Y. Qiao, and J. J. Xing. 2005. Conjugated linoleic acid attenuates the production and gene expression of proinflammatory cytokines in weaned pigs challenged with lipopolysaccharide. J. Nutr. 135:239-244.
  26. Lang, C. H., C. Dobrescu, and G. J. Bagby. 1992. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 130:43-52.
  27. Le Floc'h, N. L., D. Melchior, and C. Obled. 2004. Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livest. Prod. Sci. 87:37-45. https://doi.org/10.1016/j.livprodsci.2003.09.005
  28. Li, L. L., X. Wu, H. Z. Peng, M. Z. Fan, Z. P. Hou, X. F. Kong, Y. L. Yin, B. Zhang, T. J. Li, Y. Q. Hou, K. M .Yang, A. K. Li, C. Y. Liu, X. M. Qiu, and Y. L. Liu. 2009. The effect of dietary addition of a polysaccharide from Atractylodes macrophala Koidz on growth performance, immunoglobulin concentration and IL-$1\beta$ expression in weaned piglets. J. Agric. Sci. 147: 625-631. https://doi.org/10.1017/S002185960999013X
  29. Ling, P. R., B. R. Bistrian, B. Mendez, and N. W. Istfan. 1994. Effects of systemic infusions of endotoxin, tumor necrosis factor, and interleukin-1 on glucose metabolism in the rat: Relationship to endogenous glucose production and peripheral tissue glucose uptake. Metabolism 43:279-284. https://doi.org/10.1016/0026-0495(94)90093-0
  30. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta{Ct}}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  31. McGlone, J. J., J. L. Salak, E. A. Lumpkin, R. I. Nicholson, M. Gibson, and R. L. Norman. 1983. Shipping stress and social status effects on pig performance, plasma cortisol, natural killer cell activity, and leukocyte numbers. J. Anim. Sci. 71: 888-896.
  32. Memon, R. A., K. R. Feingold, and C. Grunfeld. 1994. The effects of cytokines on intermediary metabolism. Endocrinologist 4: 59-63.
  33. Medzhitov, R. and C. Janeway. 2000. Innate immune recognition:mechanisms and pathways. Immunol. Rev. 173: 89-97. https://doi.org/10.1034/j.1600-065X.2000.917309.x
  34. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Method 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  35. NRC. 1998. Nutrient Requirements of Swine. 10th ed. National Academy Press, Washington, DC.
  36. Park, E. J., J. X. Nan, Y. Z. Zhao, S. H. Lee, Y. H. Kim, J. B. Nam, J. J. Lee, and D. H. Sohn. 2004. Water-soluble polysaccharide from Eleutherococcus senticosus stems attenuates fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. Basic Clin. Pharmacol. Toxicol. 94:298-304.
  37. Richards, C., J. Gauldie, and H. Baumann. 1991. Cytokine control of acute phase protein expression. Eur. Cytokine Netw. 2 89-98.
  38. Shen, M. L., S. K. Zhai, H. L. Chen, Y. D. Luo, G. R. Tu, and D. W. Ou. 1991. Immunomopharmacological effects of polysaccharides from Acanthopanax senticosus on experimental animals. Int. J. Immunopharmacol. 13:549-554. https://doi.org/10.1016/0192-0561(91)90075-I
  39. Soto, L., A. I. Martin, S. Millan, E. Vara, and A. Lopez-Calderon. 1998. Effects of endotoxin lipopolysaccharide administration on the somatotropic axis. J. Endocrinol. 159:239-246. https://doi.org/10.1677/joe.0.1590239
  40. Spurlock, M. E. 1997. Regulation of metabolism and growth during immune challenge: An overview of cytokine function. J. Anim. Sci. 75:1773-1783.
  41. Steinmann, G. G., A. Esperester, and P. Joller. 2001. Immunopharmacological in vitro effects of Eleutheroeoceus senticosus extracts. Arzneimittelforschung 5l:76-83.
  42. Staub, A. M. 1965. Removal of protein-sevag method. In: Methods in Carbohydrate Chemistry (ED. R. L. Whistler). Academic Press, New York, USA.
  43. Touchette, K. J., J. A. Carroll, G. L. Allee, R. L. Matteri, C. J. Dyer, L. A. Beausang and M. E. Zannelli. 2002. Effect of spray-dried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. J. Anim. Sci. 80: 494-501.
  44. Wagner, H., A. Proksch, I. Riess-Maurer, A. Vollmar, S. Odenthal, H. Stuppner, K. Jurcic, T. M. Le, and J. N. Fang. 1985. Immunostimulating action of polysaccharides (heteroglycans) from higher plants. Arzneimittelforschung 35:1069-1075.
  45. Webel, D. M., B. N. Finck, D. H. Baker, and R. W. Johnson. 1997. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J. Anim. Sci. 75:1514-1520.
  46. Wright, K. J., R. Balaji, C. M. Hill, S. S. Dritz, E. L. Knoppel, and J. E. Minton. 2000. Integrated adrenal, somatotropic, and immune responses of growing pigs to treatment with lipopolysaccharide. J. Anim. Sci. 78:1892-1899.
  47. Wu, X., F. Y. Yan, X. F. Kong, T. J. Li, R. L. Huang, L. X. Chen, and Y. L. Yin. 2010. Effects of Acanthopanax senticosus extract on growth performance and anti-oxidative capacity in weaned piglet. Nat. Prod. Res. Dev. 22:297-301.
  48. Yin, F. G., Y. L. Yin, X. F. Kong, Y. L. Liu, Q. H. He, T. J. Li, R. L. Huang, Y. Q. Hou, X. G. Shu, L. X. Tan, L. X. Chen, J. H. Gong, S. W. Kim, and G. Y. Wu. 2008. Dietary supplementation with Acanthopanax senticosus extract modulates gut microflora in weaned piglets. Asian Australas. J. Anim. Sci. 21:1330-1338. https://doi.org/10.5713/ajas.2008.70583
  49. Yuan, S. L., X. S. Piao, D. F. Li, S. W. Kim, H. S. Lee, and P. F. Guo. 2006. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs. Anim. Sci. 82:501-507.
  50. Zhang, L. P., L. Y. Chen, and Y. S. Zhang. 1993. Study on water soluble polysaccharides from Acanthopanax senticosus fruits isolation and purification and structural investigating of AS-2. Chin. J. Biochem. Mol. Biol. 9:1-5.

Cited by

  1. Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice vol.29, pp.1, 2015, https://doi.org/10.5713/ajas.15.0534
  2. Effect of Supplementation of Acanthopanax senticosus on Growth Performance, Blood Biochemical Profiles and Expression of Pro-Inflammatory Cytokines in Broiler Chicks vol.42, pp.3, 2015, https://doi.org/10.5536/KJPS.2015.42.3.197
  3. B signaling pathways in lipopolysaccharide-challenged mice vol.87, pp.8, 2015, https://doi.org/10.1111/asj.12528
  4. Astragalus Extract Mixture HT042 Increases Longitudinal Bone Growth Rate by Upregulating Circulatory IGF-1 in Rats vol.2017, pp.1741-4288, 2017, https://doi.org/10.1155/2017/6935802
  5. inhibition of NF-κB/MLCK pathway in a mouse endotoxemia model vol.23, pp.12, 2017, https://doi.org/10.3748/wjg.v23.i12.2175
  6. Effects of dietary supplementation of natural and fermented herbs on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs pp.1828-051X, 2018, https://doi.org/10.1080/1828051X.2018.1429955
  7. The Effects of Agave fourcroydes Powder as a Dietary Supplement on Growth Performance, Gut Morphology, Concentration of IgG, and Hematology Parameters in Broiler Rabbits vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/3414319
  8. Astragalus and Ginseng Polysaccharides Improve Developmental, Intestinal Morphological, and Immune Functional Characters of Weaned Piglets vol.10, pp.None, 2019, https://doi.org/10.3389/fphys.2019.00418
  9. Modulation of hypoxia-inducible factor-1α/cyclo-oxygenase-2 pathway associated with attenuation of intestinal mucosa inflammatory damage by Acanthopanax senticosus polysaccharides in lipopolysac vol.122, pp.6, 2014, https://doi.org/10.1017/s0007114519001363
  10. A review on the immunomodulatory activity of Acanthopanax senticosus and its active components vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0250-0
  11. Effect of Resin Acid and Zinc Oxide on Immune Status of Weaned Piglets Challenged With E. coli Lipopolysaccharide vol.8, pp.None, 2014, https://doi.org/10.3389/fvets.2021.761742
  12. Macrophage immunomodulatory activity of Acanthopanax senticousus polysaccharide nanoemulsion via activation of P65/JNK/ikkαsignaling pathway and regulation of Th1/Th2 Cytokines vol.9, pp.None, 2014, https://doi.org/10.7717/peerj.12575
  13. Advances in the Extraction, Purification, Structural Characteristics and Biological Activities of Eleutherococcus senticosus Polysaccharides: A Promising Medicinal and Edible Resource With Development vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.753007
  14. Antioxidant activities and mechanisms of polysaccharides vol.97, pp.3, 2014, https://doi.org/10.1111/cbdd.13798
  15. Research Note: Effects of polysaccharide-enriched Acanthopanax senticosus extract on growth performance, immune function, antioxidation, and ileal microbial populations in broiler chickens vol.100, pp.4, 2021, https://doi.org/10.1016/j.psj.2021.101028