DOI QR코드

DOI QR Code

Comparison of Methodologies to Quantify Phytate Phosphorus in Diets Containing Phytase and Excreta from Broilers

  • de P. Naves, L. (Animal Science Department, Federal University of Lavras (UFLA)) ;
  • Rodrigues, P.B. (Animal Science Department, Federal University of Lavras (UFLA)) ;
  • Bertechini, A.G. (Animal Science Department, Federal University of Lavras (UFLA)) ;
  • Correa, A.D. (Chemistry Department, UFLA) ;
  • de Oliveira, D.H. (Animal Science Department, Federal University of Lavras (UFLA)) ;
  • de Oliveira, E.C. (Animal Science Department, Federal University of Lavras (UFLA)) ;
  • Duarte, W.F. (Biology Department, UFLA) ;
  • da Cunha, M.R.R. (Chromatography Laboratory, Ezequiel Dias Foundation)
  • Received : 2013.08.29
  • Accepted : 2014.01.24
  • Published : 2014.07.01

Abstract

The use of a suitable methodology to quantify the phytate phosphorus ($P_{phy}$) content in both the feed and the excreta from broilers is required to enable accurate calculation of the catalytic efficiency of the phytase supplemented in the feed. This study was conducted to compare 2 analytical methodologies (colorimetry and also high-performance liquid chromatography with a refractive index detector) in order to calculate the phytase efficiency by utilizing the results from the methodology that was shown to be the most appropriate. One hundred and twenty broilers were distributed in a $(4+1){\times}2$ factorial arrangement, corresponding to 4 diets that were equally deficient in P supplemented with increasing levels of phytase (0, 750, 1,500, and 2,250 units of phytase activity - FTU - per kg of feed) plus 1 positive control diet without phytase, supplied to male and female birds. The result indicated that the colorimetric methodology with an extraction ratio of 1:20 (mass of sample in g:volume of the solvent extractor in mL) was shown to be the most adequate. There was no interaction between the phytase level and the sex of the broilers (p>0.05). Males consumed 12% more $P_{phy}$ than did females (p<0.01), but the sex of the broilers did not affect (p>0.05) the excretion and retention coefficient of $P_{phy}$. The increase in the phytase level of the diet reduced (linear, p<0.01) the $P_{phy}$ excretion. The greatest $P_{phy}$ retention was estimated at 87.85% when the diet contained 1,950 FTU/kg (p<0.01), indicating that it is possible to reduce the inorganic P in the formulation at an amount equivalent to 87.85% of the $P_{phy}$ content present in the feed, which, in this research, corresponds to a decrease in 2.86 g of P/kg of the feed.

Keywords

References

  1. Angel, R., N. M. Tamim, T. J. Applegate, A. S. Dhandu, and L. E. Ellestad. 2002. Phytic acid chemistry: Influence on phytinphosphorus availability and phytase efficacy. J. Appl. Poult. Res. 11:471-480. https://doi.org/10.1093/japr/11.4.471
  2. AOAC. 2005. Official Methods of Analysis. 18th edn. Association of Official Analytical Chemists, Gaithersburg, USA.
  3. Applegate, T. J., R. Angel, and H. L. Classen. 2003. Effect of dietary calcium, 25-hydroxycholecalciferol, or bird strain on small intestinal phytase activity in broiler chickens. Poult. Sci. 82:1140-1148. https://doi.org/10.1093/ps/82.7.1140
  4. Bedford, M. R. and G. G. Partridge. 2010. Enzymes and Farm Animal Nutrition. 2nd edn. CABI, Cambridge, England.
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Brito, J. A. 2008. Vitamin $D_3$ (cholecalciferol) and 25-hydroxycholecalciferol (25-OH$D_3$) in Broiler Diets. Ph.D. Thesis. Federal University of Lavras, Lavras, Minas Gerais, Brazil.
  7. Cuneo, F., J. Amaya-Farfan, and F. Carraro. 2000. Phytate distribution in stabilized rice bran treated with exogenous phytase. Cienc. Tecnol. Aliment. 20:94-98. https://doi.org/10.1590/S0101-20612000000100018
  8. Engelen, A. J., F. C. Van der Heeft, P. H. G. Randsdorp, and E. L. C. Smit. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77:760-764.
  9. Fruhbeck, G., R. Alonso, F. Marzo, and S Santidrian. 1995. A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal. Biochem. 225:206-212. https://doi.org/10.1006/abio.1995.1145
  10. Gomide, E. M., P. B. Rodrigues, L. de P. Naves, V. M. P. Bernardino, L. M. dos Santos, and A. A. P Garcia. 2012. Diets with reduced levels of nutrients supplemented with phytase and amino acids for broilers. Cienc. agrotec. 36:100-107. https://doi.org/10.1590/S1413-70542012000100013
  11. Greiner, R., A. Farouk, M. L. Alminger, and N. G. Carlsson. 2002. The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus spp. Can. J. Microbiol. 48:986-994. https://doi.org/10.1139/w02-097
  12. Han, J. C., X. D. Yang, H. X. Qu, M. Xu, T. Zhang, W. L. Li, J. H. Yao, Y. R. Liu, B. J. Shi, J. F. Zhou, and X. Y. Feng. 2009. Evaluation of equivalency values of microbial phytase to inorganic phosphorus in 22- to 42-day-old broilers. J. Appl. Poult. Res. 18:707-715. https://doi.org/10.3382/japr.2009-00029
  13. Kornegay, E. T. 2001. Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. In: Enzymes in Farm Animal Nutrition (Ed. M. R. Bedford and G. G. Partridge). Finnfeeds International, Marlborough, Wiltshire, UK. p. 237-271.
  14. Latta, M. and M. Eskin. 1980. A simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 28:1313-1315. https://doi.org/10.1021/jf60232a049
  15. Nagata, A. K., P. B. Rodrigues, R. R. Alvarenga, M. G. Zangeronimo, K. F. Rodrigues, and G. F. R. Lima. 2011. Energy and protein levels in diets containing phytase for broilers from 22 to 42 days of age: performance and nutrient excretion. R. Bras. Zootec. 40:1718-1724. https://doi.org/10.1590/S1516-35982011000800014
  16. Nappi, G. U., M. R. Ribeiro-Cunha, J. V. Coelho, and L. Jokl. 2006. Validation methods to determine phytic and oxalic acids in "multimisturas". Cienc. Tecnol. Aliment. 26:811-820. https://doi.org/10.1590/S0101-20612006000400016
  17. Onyango, E. M., E. K. Asem, and O. Adeola. 2006. Dietary cholecalciferol and phosphorus influence intestinal mucosa phytase activity in broilers chicks. Br. Poult. Sci. 47:632-639. https://doi.org/10.1080/00071660600963651
  18. Rodrigues, P. B., R. S. Martinez, R. T. F. Freitas, A. G. Bertechini, and E. T. Fialho. 2005. Effect of collection time and methodologies on the digestibility and energy value of poultry diets. R. Bras. Zootec. 34:882-889. https://doi.org/10.1590/S1516-35982005000300021
  19. Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. de Oliveira, D. C. Lopes, A. S. Ferreira, and S. L. T. Barreto. 2005. Brazilian Table for Poultry and Pigs: Food Composition and Nutritional Requirements. 2ed. Federal University of Vicosa, Minas Gerais, Brazil.
  20. Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. de Oliveira, D. C. Lopes, A. S. Ferreira, S. L. T. Barreto, and R. F. Euclides. 2011. Brazilian Table for Poultry and Pigs: Food Composition and Nutritional Requirements. 3ed. Federal University of Vicosa, Minas Gerais, Brazil.
  21. Sandberg, A. S. and R. Ahderinne. 1986. HPLC method for determination of inositol tri-, tetra-, penta and hexaphosphates in foods and intestinal contents. J. Food Sci. 51:547-550. https://doi.org/10.1111/j.1365-2621.1986.tb13875.x
  22. Santos, L. M. dos, P. B. Rodrigues, R. R. Alvarenga, L. de P. Naves, R. Hespanhol, G. F. R. Lima, M. C. C. Lara, and L. R. Silva. 2011a. and available phosphorus levels in diets supplemented with phytase for broilers in the growing and finishing phases. R. Bras. Zootec. 40:2486-2495. https://doi.org/10.1590/S1516-35982011001100029
  23. Santos, L. M. dos, P. B. Rodrigues, R. T. F. Freitas, A. G. Bertechini, E. T. Fialho, E. M. Gomide, and L. de P. Naves. 2011b. Calcium and available phosphorus levels in diets with phytase for broilers in the pre-starter and starter phases. R. Bras. Zootec. 40:2476-2485. https://doi.org/10.1590/S1516-35982011001100028
  24. SAS Institute Inc. 2004. Statistical Analysis System User's Guide: Version 9.1. SAS Institute Inc., Cary, NC, USA.
  25. Yu, S., A. Cowieson, C. Gilbert, P. Plumstead, and S. Dalsgaard. 2012. Interactions of phytate and myo-inositol phosphate esters ($IP_{1-5}$) including $IP_5$ isomers with dietary protein and iron and inhibition of pepsin. J. Anim. Sci. 90:1824-1832. https://doi.org/10.2527/jas.2011-3866
  26. Wadt, G., T. T. Santos, G. A. Gomes, A. Cowieson, and M. R. Bedford. 2010. Total and phytate phosphorus in corn samples collected from different regions of the Brazil. In: IV Latin American Congress on Animal Nutrition, Sao Pedro, Sao Paulo, Brazil, pp. 7-8.
  27. Wu, P., J-C. Tian, C. E. C. Walker, and F-C. Wang. 2009. Determination of phytic acid in cereals - A brief review. Int. J. Food Sci. Technol. 44:1671-1676. https://doi.org/10.1111/j.1365-2621.2009.01991.x

Cited by

  1. EFFECTS OF THE COMBINATION OF NON-PHYTATE PHOSPHORUS, PHYTASE AND 25-HYDROXYCHOLECALCIFEROL ON THE PERFORMANCE AND MEAT QUALITY OF BROILER CHICKENS vol.17, pp.3, 2015, https://doi.org/10.1590/1516-635x1703371-380
  2. Efficiency of microbial phytases in diets formulated with different calcium:phosphorus ratios supplied to broilers from 35 to 42 days of age vol.44, pp.1, 2016, https://doi.org/10.1080/09712119.2015.1091324
  3. Effect of low‐temperature drying on the nitrogenous compounds and inositol phosphates in broiler chickens and cecectomized laying hen excreta vol.92, pp.1, 2021, https://doi.org/10.1111/asj.13484
  4. Tecticornia sp. (Samphire)-A Promising Underutilized Australian Indigenous Edible Halophyte vol.8, pp.None, 2014, https://doi.org/10.3389/fnut.2021.607799