DOI QR코드

DOI QR Code

NMR Studies on Transient Protein Complexes: Perspectives

  • Suh, Jeong-Yong (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University) ;
  • Yu, Tae-Kyung (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University) ;
  • Yun, Young-Joo (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Ko On (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2014.05.01
  • Accepted : 2014.06.10
  • Published : 2014.06.20

Abstract

It is generally understood that protein-protein interactions proceed via transient encounter complexes that rapidly evolve into the functional stereospecific complex. Direct detection and characterization of the encounter complexes, however, been difficult due to their low population and short lifetimes. Recent application of NMR paramagnetic relaxation enhancement first visualized the structures of the encounter complex ensemble, and allowed the characterization of their physicochemical properties. Further, rational protein mutations that perturbed the encounter complex formation provided a clue to the target search pathway during protein-protein association. Understanding the structure and dynamics of encounter complexes will provide useful information on the mechanism of protein association.

Keywords

References

  1. J. B. Matthew, P. C. Weber, F. R. Salemme, F. M. Richards, Nature 301, 169. (1983). https://doi.org/10.1038/301169a0
  2. S. H. Northrup, J. O. Boles, J. C. L. Reynolds, Science 241, 67. (1988). https://doi.org/10.1126/science.2838904
  3. J. Iwahara, C. D. Schwieters, G. M. Clore, J. Am. Chem. Soc. 126, 5879. (2004). https://doi.org/10.1021/ja031580d
  4. J. Iwahara, C. Tang, G. M. Clore, J. Magn. Reson. 184, 184. (2007).
  5. J. Iwahara, G. M. Clore, Nature 440, 1227. (2006). https://doi.org/10.1038/nature04673
  6. C. Tang, J. Iwahara, G. M. Clore, Nature 444, 383. (2006). https://doi.org/10.1038/nature05201
  7. A. N. Volkov, J. A. R. Worrall, E. Holtzmann, M. Ubbink, Proc. Natl. Acad. Sci. USA 103, 18945. (2006). https://doi.org/10.1073/pnas.0603551103
  8. D. S. Garrett, Y. J. Seok, A. Peterkovsky, A. M. Gronenborn, G. M. Clore, Nat. Struct. Biol. 6, 166. (1999). https://doi.org/10.1038/5854
  9. J. Y. Suh, C. Tang, G. M. Clore, J. Am. Chem. Soc. 129, 12954. (2007). https://doi.org/10.1021/ja0760978
  10. Y. C. Kim, C. Tang, G. M. Clore, G. Hummer, Proc. Natl. Acad. Sci. USA 105, 12855. (2008). https://doi.org/10.1073/pnas.0802460105
  11. N. L. Fawzi, M. Doucleff, J. Y. Suh, G. M. Clore, Proc. Natl. Acad. Sci. USA 107, 1379. (2010). https://doi.org/10.1073/pnas.0909370107
  12. T. K. Yu, Y. J. Yun, K. O. Lee, J. Y. Suh, Angew. Chem. Intl. Ed. 52, 3384. (2013). https://doi.org/10.1002/anie.201208688
  13. Y. S. Lee, K. S. Ryu, Y. Lee, S. Kim, K. W. Lee, H. S. Won, J. Kor. Magn. Reson. Soc. 15, 137. (2012).
  14. Y. Kim, J. J. Park, J. H. Hwang, J. T. Park, J. Kor. Magn. Reson. Soc. 15, 186. (2012).