Browse > Article
http://dx.doi.org/10.6564/JKMRS.2014.18.1.001

NMR Studies on Transient Protein Complexes: Perspectives  

Suh, Jeong-Yong (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University)
Yu, Tae-Kyung (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University)
Yun, Young-Joo (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University)
Lee, Ko On (Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.18, no.1, 2014 , pp. 1-4 More about this Journal
Abstract
It is generally understood that protein-protein interactions proceed via transient encounter complexes that rapidly evolve into the functional stereospecific complex. Direct detection and characterization of the encounter complexes, however, been difficult due to their low population and short lifetimes. Recent application of NMR paramagnetic relaxation enhancement first visualized the structures of the encounter complex ensemble, and allowed the characterization of their physicochemical properties. Further, rational protein mutations that perturbed the encounter complex formation provided a clue to the target search pathway during protein-protein association. Understanding the structure and dynamics of encounter complexes will provide useful information on the mechanism of protein association.
Keywords
NMR; paramagnetic relaxation enhancement; encounter complex; target search pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Iwahara, G. M. Clore, Nature 440, 1227. (2006).   DOI   ScienceOn
2 S. H. Northrup, J. O. Boles, J. C. L. Reynolds, Science 241, 67. (1988).   DOI
3 J. Iwahara, C. D. Schwieters, G. M. Clore, J. Am. Chem. Soc. 126, 5879. (2004).   DOI   ScienceOn
4 J. Iwahara, C. Tang, G. M. Clore, J. Magn. Reson. 184, 184. (2007).
5 C. Tang, J. Iwahara, G. M. Clore, Nature 444, 383. (2006).   DOI   ScienceOn
6 A. N. Volkov, J. A. R. Worrall, E. Holtzmann, M. Ubbink, Proc. Natl. Acad. Sci. USA 103, 18945. (2006).   DOI   ScienceOn
7 D. S. Garrett, Y. J. Seok, A. Peterkovsky, A. M. Gronenborn, G. M. Clore, Nat. Struct. Biol. 6, 166. (1999).   DOI   ScienceOn
8 J. Y. Suh, C. Tang, G. M. Clore, J. Am. Chem. Soc. 129, 12954. (2007).   DOI   ScienceOn
9 Y. C. Kim, C. Tang, G. M. Clore, G. Hummer, Proc. Natl. Acad. Sci. USA 105, 12855. (2008).   DOI   ScienceOn
10 T. K. Yu, Y. J. Yun, K. O. Lee, J. Y. Suh, Angew. Chem. Intl. Ed. 52, 3384. (2013).   DOI   ScienceOn
11 Y. S. Lee, K. S. Ryu, Y. Lee, S. Kim, K. W. Lee, H. S. Won, J. Kor. Magn. Reson. Soc. 15, 137. (2012).
12 Y. Kim, J. J. Park, J. H. Hwang, J. T. Park, J. Kor. Magn. Reson. Soc. 15, 186. (2012).
13 J. B. Matthew, P. C. Weber, F. R. Salemme, F. M. Richards, Nature 301, 169. (1983).   DOI   ScienceOn
14 N. L. Fawzi, M. Doucleff, J. Y. Suh, G. M. Clore, Proc. Natl. Acad. Sci. USA 107, 1379. (2010).   DOI   ScienceOn