DOI QR코드

DOI QR Code

예측의 문제 상황에 대한 멘탈 시뮬레이션에서 나타난 심상 시뮬레이션의 역할과 전략 분석

An Analysis on the Roles and Strategies of Imagistic Simulation Observed in Mental Simulation about Problematic Situations of Prediction

  • 투고 : 2014.02.25
  • 심사 : 2014.04.16
  • 발행 : 2014.05.30

초록

이 연구의 목적은 공기 이동에 관한 사고실험에서 나타나는 멘탈 시뮬레이션을 분석하여 예측과 설명의 생성 및 정교화 과정을 알아봄으로써 멘탈 모델링 교육에 대한 시사점을 주는데 있다. 이를 위해 문헌 연구를 기반으로 멘탈 시뮬레이션 과정 및 전략 분석틀을 개발하였으며, 과학교육 전문가 4인의 내용타당도를 확인 받았다. 연구 참여자는 초등예비교사 10명을 대상으로 하였으며, 개발된 2개의 사고실험 과제에 대해 사고발성법을 통해 총 20개의 사례를 수집하였다. 연구의 결과는 다음과 같다. 첫째, 멘탈 시뮬레이션 과정은 문제상황지각, 상황해석, 초기표상 진술, 심상 시뮬레이션 실행, 시뮬레이션 결과 확인, 정렬 확인, 구조화된 표상 재진술의 과정으로 나타났으며, 관련 개념을 해석하여 초기 표상을 진술한 후 여러 차례의 심상 시뮬레이션의 실행을 통해 설명과 예측을 생성하고 정교화 하고 있음을 확인하였다. 둘째, 멘탈 시뮬레이션 과정에서 확대, 분할, 차원강화, 차원감소, 첨가, 제거, 대체, 최소최대화와 같은 시뮬레이션 전략의 사용이 확인되었다. 시뮬레이션 전략의 사용은 문제 상황의 메커니즘 요소를 발견하는데 기여하였다.

Purpose of this study is to analyze the roles and strategies of imagistic simulation observed in mental simulation about problematic situation of prediction, and thereby identify the process of generating prediction, explanation and sophistication. For this study, a framework for mental simulation process and strategy based on literary research was developed and content was validated from four experts of science education. This study was participated by 10 preliminary elementary school teachers, and a total of 20 cases were gathered for two thought experiment tasks based on the think-aloud method. The results were as follows: First, mental simulation process described based on the seven elements of 'perception,' 'interpretation,' 'statement of initial representation,' 'running imagistic simulation,' 'identifying result of simulation,' 'identifying alignment' and 'restatement structured representation.' The study confirmed that initial representation by interpreting related concepts and running imagistic simulation a number of times to develop explanation and prediction. Second, the study identified the use of strategies to enhance simulation such as 'zoom in,' 'partition,' 'dimensional enhancement,' 'dimensional reduction,' 'remove,' 'replace' and 'extreme case.' Running spatial transformation that uses strategy to enhance simulation contributed to discovering mechanism elements in problematic situations.

키워드

참고문헌

  1. Ko, M., & Yang, I. (2013). Analysis on the relationship between the construct level of analogical reasoning and the construction of explanatory model observed in small group discussions on scientific problem solving. Journal of the Korean Association for Research in Science Education, 33(2), 522-537. https://doi.org/10.14697/jkase.2013.33.2.522
  2. Ball, L. J., & Christensen, B. T. (2009). Analogical reasoning and mental simulation in design: Two strategies linked to uncertainty resolution. Design Studies, 30(2), 169-186. https://doi.org/10.1016/j.destud.2008.12.005
  3. Berland, L., & Reiser, B. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55. https://doi.org/10.1002/sce.20286
  4. Bogacz, S., & Trafton, J. G. (2005). Using dynamic and static displays: Using images to reason dynamically. Cognitive Systems Research, 6(4), 312-319. https://doi.org/10.1016/j.cogsys.2004.11.007
  5. Botzer, G., & Reiner, M. (2005). Imagery in physics learning - From physicists' practice to naïve students' understanding. In Gilbert, J. K. (Ed.), Visualizations in science education (Vol. 1, pp 147-168). Dordrecht, The Netherlands: Springer.
  6. Brown, J. R. (1991). The Laboratory of the Mind: Thought Experiments in the Natural Sciences. London: Routledge.
  7. Clement, J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053. https://doi.org/10.1080/095006900416901
  8. Clement, J. (2003). Imagistic simulation in scientific model construction. Proceedings of the Twenty-Fifth Annual Conference of the Cognitive Science Society, 25. Mahwah, NJ: Erlbaum.
  9. Clement, J. (2009). The role of imagistic simulation in scientific thought experiments. Topics in Cognitive Science, 1(4), 686-710. https://doi.org/10.1111/j.1756-8765.2009.01031.x
  10. Clement, J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht: Springer.
  11. Christensen, B. T., & Schunn, C. D. (2009). The role and impact of mental simulation in design, Cognitive Psychology, 23(3), 327-344. https://doi.org/10.1002/acp.1464
  12. Dove, J. E., Everett, L. A. & Preece, P. F. W. (1999). Exploring a hydrological concept through children''s drawings. International Journal of Science Education, 21(5), 485-497. https://doi.org/10.1080/095006999290534
  13. Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72. https://doi.org/10.1080/03057260208560187
  14. Ehrlen, K. (2009). Drawings as representations of children's conceptions. International Journal of Science Education, 31(1), 41-57. https://doi.org/10.1080/09500690701630455
  15. Galili, I. (2009). Thought Experiments: Determining Their Meaning. science &Education, 18(1), 1-23. https://doi.org/10.1007/s11191-007-9124-4
  16. Gabbard, C. (2012). The role of mental simulation in embodied cognition. Early Child Development and Care, 183(5), 643-650.
  17. Gilbert, J., & Reiner, M. (2000). Thought experiments in science education: potential and current realization. International Journal of Science Education, 22(3), 265-283. https://doi.org/10.1080/095006900289877
  18. Gilbert, J., & Reiner, M. (2004). The symbiotic roles of empirical experimentation and thought experimentation in the learning of physics. International Journal of Science Education, 26(15), 1819-1834. https://doi.org/10.1080/0950069042000205440
  19. Gobert, J. D., & Buckly, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. https://doi.org/10.1080/095006900416839
  20. Garcia-Mila, M., & Andersen, C. (2007). Developmental change in notetaking during scientific inquiry. International Journal of Science Education, 29(8), 1035-1058. https://doi.org/10.1080/09500690600931103
  21. Griffith, T. W., Nersessian, N. J., & Goel, A. (2000). Function-follows-form transformations in scientific problem solving. In Proceedings of the Cognitive Science Society 22, 196-201. Mahwah, NJ: Lawrence Erlbaum.
  22. Hegarty, M. (2004). Diagrams in the mind and in the world: Relations between internal and external visualizations. In A. Blackwell et al. (Eds.), Diagrams 2004 Conference Proceedings. LNAI 2980 (pp. 1-13). Berlin and Heidelberg: Springer-Verlag.
  23. Kali, Y., Orion, N., & Mazor, E. (1997). Software for assisting high school students in the spatial perception of geological structures, Journal of Geoscience Education, 45(1), 10-21.
  24. Kali, Y. (2003). A virtual journey within the rock-cycle: A software kit for the development of systems-thinking in the context of the earth's crust. Journal of GeoScience Education, 51(2), 165-170.
  25. Khan, S. (2008). What if scenarios for testing student models in chemistry. In J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (Chapter. 8, pp. 139-150). Dordrecht: Springer.
  26. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  27. Lane, R., & Coutts, P. (2012). Student's alternative conceptions of tropical cyclone causes and processes. International Research in Geographical & Environmental Education, 21(3), 205-222. https://doi.org/10.1080/10382046.2012.698080
  28. Moulton, S. T., & Kosslyn, S. M. (2009). Imagining predictions: mental imagery as mental emulation. Philosophical Transactions of the Royal Society, 364(1521), 1273-1280. https://doi.org/10.1098/rstb.2008.0314
  29. Mualem, R., & Eylon, B. S. (2010). Junior high school physics: Using a qualitative strategy for successful problem solving. Journal of Research in Science Teaching, 47(9), 1094-1115. https://doi.org/10.1002/tea.20369
  30. Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133-153). Cambridge: Cambridge University Press.
  31. Nersessian, N. J. (1993). In the theoretician's laboratory: Thought experimentation as mental modelling. Proceedings of the Biennial Meeting of the Philosophy of Science Association 2, 291-301.
  32. Nersessian, N. J. (2008). Mental modeling in conceptual change. In S. Vosniadou (Ed.), Interntional handbook of conceptual change (pp. 391-416). New York, NY: Routledge.
  33. Nersessian, N. J. (2009). How do engineering scientists think? model-based simulation in biomedical engineering research laboratories. Topics in Cognitive Science, 1(1), 1-28. https://doi.org/10.1111/j.1756-8765.2008.01001.x
  34. Ramadas, J. (2009). Visual and Spatial Modes in Science Learning. International Journal of Science Education, 31(3), 301-318. https://doi.org/10.1080/09500690802595763
  35. Reiner, M., & Gilbert, J. (2000). Epistemological resources for thought experimentation in science learning. International Journal of Science Education, 22(5), 489-506. https://doi.org/10.1080/095006900289741
  36. Reiner, M. (1998). Thought experiments and collaborative learning in physics. International Journal of Science Education, 20(9), 1043-1058. https://doi.org/10.1080/0950069980200903
  37. Roberts, M. J., & Newton, E. J. (2003). Individual differences in the development of reasoning strategies. In D. Hardman & L. Macci (Eds.), Thinking: Psychological perspectives on reasoning, judgment, and decision making (pp. 23-43). Chichester: John Wiley.
  38. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  39. Snir, J., Smith, C. L., & Raz, G. (2003). Linking phenomena with competing underlying models: A software tool for introducing students to the particulate nature of matter. Science Education, 87(6), 794-830. https://doi.org/10.1002/sce.10069
  40. Steedle, J. T., & Shavelson, R. J. (2009). Supporting valid interpretations of learning progression level diagnoses. Journal of Research in Science Teaching, 46(6), 699-715. https://doi.org/10.1002/tea.20308
  41. Stephens, L. & Clement, J. (2006). Designing classroom thought experiments: What we can learn from imagery indicators and expert protocols. Proceedings of the NARST 2006 Annual Meeting, San Francisco, CA.
  42. Stephens, L., & Clement, J. (2010) Documenting the use of expert scientific reasoning process by high school physics students. Physical Review Special Topics - Physics Education Research, 6(2), URL: http://link.aps.org/doi/10.1103/PhysRevSTPER.6.020122.
  43. Stieff, M., & Raje, S. (2010). Expert algorithmic and imagistic problem solving strategies in advanced chemistry. Spatial Cognition & Computation, 10(1), 53-81, 2010. https://doi.org/10.1080/13875860903453332
  44. Taylor, K. L., & Dionne, J. P. (2000). Problem-Solving strategy knowledge: the complementary concurrent verbal protocols and retrospective debriefing. Journal of Educational Psychology, 92(3), 413-425. https://doi.org/10.1037/0022-0663.92.3.413
  45. Trafton, J. G., Trickett, S. B., & Mintz, F. (2005). Connecting internal and external representations: Spatial transformations of scientific visualizations. Foundations of Science, 10(1), 89-106. https://doi.org/10.1007/s10699-005-3007-4
  46. Trickett, S., & Trafton, J. G. (2002). The instantiation and use of conceptual simulations in evaluating hypotheses: Movies in the mind in scientific reasoning. Peoceedings of the 24th Annual Conference of the Cognitive Science Society, Mahwah, NJ.
  47. Trickett, S. B., & Trafton, J. G. (2007). "What if...": The use of conceptual simulations in scientific reasoning, Cognitive Science, 31(5), 843-875. https://doi.org/10.1080/03640210701530771
  48. Trickett, S. B., Trafton, J. G., & Schunn, C. D. (2009). How do scientists respond to anomalies? different strategies used in basic and applied science. Topics in Cognitive Science, 1(4), 711-729. https://doi.org/10.1111/j.1756-8765.2009.01036.x
  49. Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method: A practical guide to modeling cognitive processes. San Diego, CA: Academic press.

피인용 문헌

  1. Exploration of the Strategy in Constructing Visualization Used by Pre-service Elementary School Teachers in Making Science Video Clip for Flipped Learning - Focusing on Earth Science - vol.35, pp.2, 2015, https://doi.org/10.14697/jkase.2015.35.2.0231
  2. 계절의 변화 원인에 대한 초등학생들의 설명에서 확인된 정신 모델과 묘사적 몸짓의 관계 분석 vol.7, pp.3, 2014, https://doi.org/10.15523/jksese.2014.7.3.358