DOI QR코드

DOI QR Code

지환족 다이안하이드라이드를 이용한 용해성 폴리이미드 공중합체 합성 및 메탄/이산화탄소 분리특성

Synthesis of Soluble Copolyimides Using an Alicyclic Dianhydride and Their $CO_2/CH_4$ Separation Properties

  • 박채영 (한국화학연구원 환경자원공정연구센터 자원분리회수연구그룹) ;
  • 이용택 (충남대학교 바이오응용화학과) ;
  • 김정훈 (한국화학연구원 환경자원공정연구센터 자원분리회수연구그룹)
  • Park, Chae Young (Resources Separation and Recovery Research Group, Division of Green Chemistry and Process, Korea Research Institute of Chemical Technology) ;
  • Lee, Yongtaek (Department of Bio-Applied Chemistry, Chungnam National University) ;
  • Kim, Jeong Hoon (Resources Separation and Recovery Research Group, Division of Green Chemistry and Process, Korea Research Institute of Chemical Technology)
  • 투고 : 2013.10.04
  • 심사 : 2013.10.10
  • 발행 : 2014.02.28

초록

지환족 다이안하이드라이드인 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA)와 4,4'-diaminodiphenyl ether (ODA)에서 합성된 폴리이미드는 유기용매에 잘 용해되는 폴리이미드로 알려져 있다. 이러한 DOCDA-ODA 폴리이미드의 기체 투과특성을 평가하고 투과선택도를 개선시키기 위해서 DOCDA-ODA 반응물에 세 가지 dianhydride 단량체((4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA))를 각각 20 mol% 첨가하여 순수중합체 및 공중합체를 합성하였다. 폴리이미드 합성이 성공적으로 이루어졌음을 FT-IR을 통해 확인하였고, 그들의 열적특성은 DSC를 통해 알아보았다. 제조된 폴리이미드들의 $CO_2/CH_4$에 대한 기체투과도와 선택도는 time-lag법을 이용하여 측정하였다. 그 결과 순수고분자인 DOCDA-ODA의 경우 $CO_2$ 투과도는 1.71 barrer, $CO_2/CH_4$ 선택도는 74.35의 우수한 투과특성을 보였다. 세 가지 공중합체의 경우 DOCDA-ODA에 비해 $CO_2$ 투과도는 높게 나타난 반면에 $CO_2/CH_4$ 선택도는 감소하였다. 특히, 6FDA를 첨가한 경우 $CO_2/CH_4$ 선택도는 DOCDA-ODA보다 다소 낮은 결과를 나타내었지만 $CO_2$ 투과도가 크게 증가하였음을 확인할 수 있었다.

In this study, four soluble homo- and co-polyimides using 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 4,4'-diaminodiphenyl ether (ODA) monomers were synthesized to develop the gas separation membrane with good $CO_2/CH_4$ separation properties. To prepare the copolyimides, 20 mol% of three dianhydrides - (4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) - were added in DOCDA-ODA monomer mixture, respectively. All the synthesized homo- and co-polyimides were characterized by FT-IR. Their thermal properties were analyzed with differential scanning calorimeter (DSC). Dense membranes were prepared from these copolyimides to check their gas permeation properties for $CO_2$ and $CH_4$ gases using a time-lag method. The permeation testing results are as follows; DOCDA/ODA homopolymer showed 1.71 barrer of $CO_2$ permeability and 74.35 of $CO_2/CH_4$ selectivity. The three polyimide copolymers (DOCDA/6FDA-ODA, DOCDA/BPDA-ODA, DOCDA/BTDA-ODA) showed lower $CO_2/CH_4$ selectivities and higher $CO_2$ permeabilities than the homopolymer (DOCDA-ODA). DOCDA/6FDA-ODA showed twice times higher $CO_2$ permeabilities without severe $CO_2/CH_4$ selectivity loss than the DOCDA-ODA.

키워드

참고문헌

  1. M. Mulder, "Basic Principles of Membrane Technology", Kluwer Academic Publisher, Dordrecht (1991).
  2. W. S. W. Ho and K. K. Sirkar, "Membrane Handbook", Van Nostrand Reinhold, New York (1992).
  3. D. R. Paul and Y. Yampol'skii, "Polymeric Gas separation Membranes", CRC Press, London (1990).
  4. R. E. Kesting and A. K. Fritzsche, "Polymeric Gas Separation Membranes", John Wiley & Sons., New York (1993).
  5. S. A. Stern, "Polymers for gas separations: the next decade", J. Membr. Sci., 94, 1 (1994). https://doi.org/10.1016/0376-7388(94)00141-3
  6. K. Haraya and S. T. Hwang, "Permeation of oxygen, argon and nitrogen through polymer membranes", J. Membr. Sci., 71, 13 (1992). https://doi.org/10.1016/0376-7388(92)85002-Z
  7. W. M. Lee, "Selection of barrier materials from molecular structure", Polym. Eng. sci., 20, 65 (1980). https://doi.org/10.1002/pen.760200111
  8. J. A. Moor and D. R. Robello, "Curable, thermally stable poly(enaminonitriles)", Macromolecules, 22, 1084 (1989). https://doi.org/10.1021/ma00193a015
  9. K. Matsumoto and P. Xu, "Gas permeation properties of hexafluoro aromatic polyimides", J. Appl. Polym. Sci., 47, 1961 (1993). https://doi.org/10.1002/app.1993.070471106
  10. M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990). https://doi.org/10.1016/S0376-7388(00)80626-2
  11. H. Yamamoto, Y. Mi, S. A. Stern, and A. K. St. Clair, "Structure/permeability relationships of polyimide membranes. II", J. Polym. Sci., Part B: Polym. Phys., 28, 2291 (1990). https://doi.org/10.1002/polb.1990.090281210
  12. D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membrane Journal, 21, 307 (2011).
  13. S. H. Hsiao, C. P. Yang, and C. K. Lin, "Syntheses and Properties of Polyimides based on Bis(paminophenoxy) biphenyls", J. Polym. Res., 2, 1 (1995). https://doi.org/10.1007/BF01493428
  14. J. N. Barsema, G. C. Kapantaidakis, N. F. A. van der Vegt, G. H. Koops, and M. Wessling, "Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide", J. Membr. Sci., 216, 195 (2003). https://doi.org/10.1016/S0376-7388(03)00071-1
  15. J. J. Krol, M. Boerrigter, and G. H. Koops, "Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments", J. Membr. Sci., 184, 275 (2001). https://doi.org/10.1016/S0376-7388(00)00640-2
  16. T. M. Moy and J. E. McGrath, "Synthesis of hydroxyl- containing polyimides derived from 4,6-diamino- resorcinol dihydrochloride and aromatic tetracarboxylic dianhydrides", J. polym. Sci., Part A: Polym. Chem., 32, 1903 (1994). https://doi.org/10.1002/pola.1994.080321012
  17. S. Itamara, M. Yamada, S. Tamura, T. Matsumoto, and T. Kurosaki, "Soluble polyimides with polyalicyclic structure. 1. Polyimides from bicyclo[2.2.2] oct-7-ene-2-exo,3-exo,5-exo,6-exo-tetracarboxylic 2,3:5,6-dianhydrides", Macromolecules, 26, 3490 (1993). https://doi.org/10.1021/ma00066a005
  18. M. Kusama, T. Matsumoto, and T. Kurosaki, "Soluble Polyimides with Polyalicyclic Structure.3. Polyimides from (4arH,8acH)-Decahydro-1t,4t:5c,8cdimethanonaphthalene- 2t,3t,6c,7c-tetracarboxylic 2,3:6,7-Dianhydride", Macromolecules, 27, 1117 (1994). https://doi.org/10.1021/ma00083a008
  19. M. Yamada, M. Kusama, T. Matsumoto, and T. Kurosaki, "Soluble polyimides with polyalicyclic structure. 2. Polyimides from bicyclo[2.2.1]heptane- 2-exo-3-exo-5-exo-6-exo-tetracarboxylic 2,3:5,6-dianhydride", Macromolecules, 26, 4961 (1993). https://doi.org/10.1021/ma00070a034
  20. N. Ariga, Jpn. KoKai Tokkyo Koho 57-121035,13. 57-177050 (1982).
  21. E. H. Kim. 2012. "Preparation of partiallyfluorinated polyarylene ether/soluble polyimidemembranes and their fuel cell/gas transportproeprties". Master Thesis, University of scienceand technology, Daejeon.
  22. J. T. Chung, C. S. Lee, H. C. Koh, S. Y. Ha, S. Y. Nam, W. J. Jo, and Y. S. Baek, "Polymeric Membrane Modules for Substituting the $CO_{2}$ Absorption Column in the DME Plant Process", Membrane Journal, 22, 142 (2012).
  23. H. B. Park and Y. M. Lee, "High Permeability, High Selectivity Carbon-Silica Membranes for Gas Separation", Membrane Journal, 12, 107 (2002).
  24. K. Y. Chun, H. S. Kim, H. S. Han, and Y. I. Joe, "The preparation and the Gas Permeation Characteristics of the Soluble Polyimides", J. Korean Ind. Eng. Chem., 9, 306 (1998).
  25. H. G. Im, J. H. Kim, H. S. Lee, and T. M. Kim, "Effect of Long Time Physical Aging on Ultra Thin 6FDA-Based Polyimide Films Containing Carboxyl Acid Group", Polymer(Korea), 31, 335 (2007).
  26. J. H. Kim, S. B. Lee, and S. Y. Kim, "Incorporation Effects of Fluorinated Side Groups into Polyimide Membranes on Their Physical and Gas Permeation Properties", J. Appl. Polym. Sci., 77, 2756 (1999).