References
- Anzai Y, Iizaka Y, Li W, Idemoto N, Tsukada S, Koike K, et al. 2009. Production of rosamicin derivatives in Micromonospora rosaria by introduction of D-mycinose biosynthetic gene with PhiC31-derived integration vector pSET152. J. Ind. Microbiol. Biotechnol. 36: 1013-1021. https://doi.org/10.1007/s10295-009-0579-y
- Anzai Y, Sakai A, Li W, Iizaka Y, Koike K, Kinoshita K, Kato F. 2010. Isolation and characterization of 23-Omycinosyl- 20-dihydro-rosamicin: a new rosamicin analogue derived from engineered Micromonospora rosaria. J. Antibiot. 63: 325-328. https://doi.org/10.1038/ja.2010.38
- Baumueller A, Hoyme U, Madsen PO. 1977. Rosamicin - a new drug for the treatment of bacterial prostatitis. Antimicrob. Agents Chemother. 12: 240-242. https://doi.org/10.1128/AAC.12.2.240
- Fischbach MA, Walsh CT. 2009. Antibiotics for emerging pathogens. Science 325: 1089-1093. https://doi.org/10.1126/science.1176667
- Iizaka Y, Higashi N, Ishida M, Oiwa R, Ichikawa Y, Takeda M, et al. 2013. Function of cytochrome P450 enzymes RosC and RosD in the biosynthesis of rosamicin macrolide antibiotic produced by Micromonospora rosaria. Antimicrob. Agents Chemother. 57: 1529-1531. https://doi.org/10.1128/AAC.02092-12
- Lee BK, Puar MS, Patel M, Bartner P, Lotvin J, Munayyer H, Waitz JA. 1983. Multistep bioconversion of 20-deoxo-20- dihydro-12,13-deepoxy-12,13-dehydrorosaranolide to 22-hydroxy- 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxy-rosaramicin. J. Antibiot. 36: 742-744. https://doi.org/10.7164/antibiotics.36.742
- Park JW, Oh HS, Jung WS, Park SR, Han AR, Ban YH, et al. 2008. Exploiting the natural metabolic diversity of Streptomyces venezuelae to generate unusual reduced macrolides. Chem. Commun. 44: 5782-5784.
- Park JW, Park SR, Han AR, Ban YH, Yoo YJ, Kim EJ, et al. 2011. Generation of reduced macrolide analogs by regiospecific biotransformation. J. Antibiot. 64: 155-157. https://doi.org/10.1038/ja.2010.143
- Park JW, Park SR, Han AR, Ban YH, Yoo YJ, Kim EJ, et al. 2011. Microbial transformation of trichostatin A to 2,3- dihydrotrichostatin A. J. Nat. Prod. 74: 1272-1274. https://doi.org/10.1021/np1006718
- Park JW, Park SR, Nepal KK, Han AR, Ban YH, Yoo YJ, et al. 2011. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7: 843-852. https://doi.org/10.1038/nchembio.671
- Sadakane N, Tanaka Y, Omura S. 1982. Hybrid biosynthesis of derivatives of protylonolide and M-4365 by macrolideproducing microorganisms. J. Antibiot. 35: 680-687. https://doi.org/10.7164/antibiotics.35.680
- Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, Jabbar A. 2010. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat. Prod. Rep. 27: 238-254. https://doi.org/10.1039/b916096e
- Wagman GH, Waitz JA, Marquez J, Murawaski A, Oden EM, Testa RT, Weinstein MJ. 1972. A new Micromonosporaproduced macrolide antibiotic, rosamicin. J. Antibiot. 25: 641-646. https://doi.org/10.7164/antibiotics.25.641
- Zhou J, Ogle JW, Fan Y, Banphavichit V, Zhu Y, Burgess K. 2007. Asymmetric hydrogenation routes to deoxypolyketide chirons. Chemistry 13: 7162-7170. https://doi.org/10.1002/chem.200700390
Cited by
- Recent progress on the development of antibiotics from the genus Micromonospora vol.21, pp.2, 2014, https://doi.org/10.1007/s12257-015-0574-2
- Engineering actinomycetes for biosynthesis of macrolactone polyketides vol.18, pp.None, 2019, https://doi.org/10.1186/s12934-019-1184-z