DOI QR코드

DOI QR Code

중소형 무인항공기 개념설계를 위한 형상 및 성능 분석

Configuration and Performance Analyses for Conceptual Design of Small and Mid-Unmanned Aerial Vehicles

  • Jeon, Byung-Il (Graduate School, Korea Aerospace University) ;
  • Lee, Narae (Graduate School, Korea Aerospace University) ;
  • Chang, Young-Keun (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2014.02.10
  • 심사 : 2014.05.27
  • 발행 : 2014.06.01

초록

개념설계는 복합시스템인 무인기의 성공적인 개발을 위해 가장 중요한 단계로써 간단한 성능해석과 형상설계가 수행된다. 개념설계 단계에서의 성능해석은 복잡한 해석도구를 사용하기 보다는 주로 경험식이나 통계적 데이터를 이용한 추세방정식을 사용한다. 무인기의 형상은 매우 다양하여 개념설계 단계에서 이러한 모든 항공기 형상을 고려하기에는 어려움이 있다. 본 연구에서는 무인기 개념설계를 위해 주요 성능변수에 대한 추세방정식을 도출하였고, 자주 사용되는 형상 선정을 위해 최대이륙중량 50-1,500kg 급의 중소형 무인기에 대한 데이터베이스를 구축하였다. 또한 주요 성능변수들에 대한 파라미터 분석을 수행하였으며, 이들 성능변수에 대한 상관도 분석결과에 따라 높은 상관도를 보이는 최대이륙중량과 날개폭을 기준으로 각 성능요소별 회귀분석을 수행하여 추세방정식을 도출하였다.

The simplified performance analysis and initial configuration design are required for the successful development of UAV during the conceptual design, in which empirical formulas and trend equations are utilized for the UAV performance analysis. In the conceptual design phase various UAV configurations may be considered, however, it is very inefficient and unnecessary to consider all configurations for the conceptual design. In this study, the database for the fixed wing UAVs whose MTOW is between 50kg and 1,500kg was also constructed for the selection of configuration frequently used. The parametric analyses were performed for major performance parameters, and trend equations were developed through regression analyses for these individual performance parameters.

키워드

참고문헌

  1. Aircraft Design Education Research Society, Aircraft Conceptual Design, 2010, KYUNGMOON.
  2. D. P. Raymer, Aircraft Design A Conceptual Approach, AAIA Education Series, Vol. 4, 2006.
  3. Z. Goraj, A. Frydrychewicz, R. Switkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf - Grabowski, M. Figat, St. Suchodolski and W. Chajec, "High altitude long endurance unmanned aerial vehicle of a new generation -a design challenge for a low cost, reliable and high performance aircraft," Bulletin of the polish academy of sciences, Vol. 52, No. 3, 2004.
  4. A. Altman, "A Conceptual Design Methodology for Low Speed High Altitude Long Endurance Unmmaned Aerial Vehicles," Cranfield University, Ph.D. Thesis, 2000.
  5. F. A. Pulikkottil, "Fixed Wing UAV Modular Design and Development," University of New South Wales at the Australian Defence Force Academy, 2011.
  6. Zdobyslaw Goraj, Miroslaw Rodzewicz, Wojciech Grendysa and Marek Jonas, "Design and Configuration Layouts of an Advanced Long Endurance UAV - Lessons Learnt After Flight Testing," Interantional Congress of The Aeronautical Sciences, 2012.
  7. B. Pralio, Germanna Vinelli, Giorgio Guglieri and Fulvia Quagliotti, "Preliminary Design of a UAV Configuration," AIAA, 2001.
  8. M. M. Abdelrahman, M. M. Elnomrossy and M. R. Ahmed, "Development of Mini Unmanned Air Vehicles," International Conference on Aerospace Sciences & Aviation Technology, 2009.
  9. Z. Goraj, A. Frydrychewicz, R. Switkiewicz, B/ Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, St. Suchodolski and W. Chajec, "High altitude long endurance unmanned aerial vehicles of a new generation - a design challenge for a low cost, reliable and high performance aircraft," Bulletin of the Polish Academy of Sciences, Vol. 52, No. 3, 2004.
  10. T. Pemverton, "Aspects of Use of CFD for UAV Configuration Design," UAV Workshop at Bath University, 2002.
  11. M. Atkinson and Frederick Ferguson, "A Computational Fluid Dynamics Investigation of the 1303 UCAV Configuration with Deployable Rao Vortex Flaps," North Carolina Agricultural and Techinical State University, 2005.
  12. P. Runyan, Wang Heping, Wang Zhengping, Lin Yu, "Decision-making of Aircraft Optimum Configuration Utilizing Multi-dimensional Game Theory," Chinese Journal of Aeronautics 23, pp. 194-197, 2009.
  13. K. E. Lewis, "The Tradeoffs Between Cooperative and Approximate Cooperative Formulations in Multidisciplinary Design,"AIAA-1998-4923, 1998.
  14. Peter Bockelmann, "The Importance of logistics for all lifecycles of a UAV system," the UAV 2007 Conference, 2007.
  15. V. Khromov and O. Rand, "Design Trends for Rotary-wing Unmanned Air Vehicles," 25th International Congress of The Aeronautical Sciences, 2006.
  16. J. Choi and K. Lee, "The Development of Database Product for UAV system Pre-Concept Design," The 2002 Fall Conference of Korean Society for Aeronautical & Space Sciences, pp. 863-868, 2002.
  17. T.H.G. Megson, "Aircraft Structures for engineering Students," Thired ed., Sydney: Butterworth-Heinemann Ltd., p. 225, 1999.