DOI QR코드

DOI QR Code

Synchronization of the pehlivan chaos system using GA-based sliding mode control

GA기반의 슬라이딩 모드 제어를 이용한 Pehlivan 카오스 시스템의 동기화

  • Lee, Yun-Hyung (Department of Education, Korea Port Training Institute) ;
  • Jin, Gang-Gyoo (Division of IT, Korea Maritime and Ocean University) ;
  • Jung, Byung-Gun (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Oh, Sea-June (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • So, Myung-Ok (Division of Marine Engineering, Korea Maritime and Ocean University)
  • Received : 2013.09.17
  • Accepted : 2014.04.18
  • Published : 2014.05.31

Abstract

This paper investigates the problem of synchronization of the Pehlivan chaotic system based on sliding mode control and GA. For this, a brief overview of the Pehlivan chaotic system is given. Then, the conventional sliding mode control technique is described and a synchronization method using GA strategy is proposed. The proposed method is that the GA searched the parameters including sliding plane and control gains) selected by the designer in the sliding mode control are searched optimally through the GA. The GA in the MATLAB Toolbox was used and simulation work is shown to illustrate the effectiveness of the synchronization schemes for the chaotic system.

본 논문에서는 슬라이딩 모드제어와 유전알고리즘(GA)을 결합하여 Pehlivan 카오스 시스템의 동기화 문제에 대해 다룬다. 이를 위해 우선 Pehlivan 카오스 시스템의 특징에 대해 간단히 살펴본다. 다음으로 보편적으로 사용되는 기존의 슬라이딩 모드 제어 기법을 설명하고, 본 논문에서 제안하는 GA를 이용한 설계방법을 제안한다. 본 논문에서 제안하는 방법은 기존의 슬라이딩 모드 제어 기법에서 사용자가 선정해야 하는 파라미터(슬라이딩 평면 및 제어 이득)를 GA를 통해 탐색하는 방법이다. 이때 사용하는 GA는 MATLAB Toolbox에서 제공하는 것을 사용하였으며 컴퓨터 시뮬레이션을 통해 제안한 기법의 유효성을 살펴본다.

Keywords

References

  1. O. E. Rossler, "An equation for continuous chaos," Physics Letters A, vol. 57, no. 5, pp. 397-398, 1976. https://doi.org/10.1016/0375-9601(76)90101-8
  2. G. Chen and T. Ueta, "Yet another chaotic attractor," International Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1465-1466, 1999. https://doi.org/10.1142/S0218127499001024
  3. J. Lu and G. Chen, "A new chaotic attractor coined," International Journal of Bifurcation and Chaos, vol. 12, no. 3, pp. 659-661, 2002. https://doi.org/10.1142/S0218127402004620
  4. C. Liu, T. Liu, L. Liu, and K. Liu, "A new chaotic attractor," Chaos, Solitons and Fractals, vol. 22, no. 5, pp. 1031-1038, 2004. https://doi.org/10.1016/j.chaos.2004.02.060
  5. M. Feki, "An adaptive chaos synchronization scheme applied to secure communication," Chaos, Solitons and Fractals, vol. 18, no. 1, pp. 141-148, 2003. https://doi.org/10.1016/S0960-0779(02)00585-4
  6. R. Rhouma and S. Belghith, "Cryptoanalysis of a chaos based cryptosystem on DSP," Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 876-884, 2011. https://doi.org/10.1016/j.cnsns.2010.05.017
  7. C. K. Volos, I. M. Kyripianidisb, and I. N. Stouboulosb, "A chaotic path planning generator for autonomous mobile robots," Robotics and Autonomous Systems, vol. 60, no. 4, pp. 651-656, 2012. https://doi.org/10.1016/j.robot.2012.01.001
  8. X. S. Yang, Q. Yuan, "Chaos and transient chaos in simple hopfield neural networks," Neurocomputing, vol. 69, no. 1-3, pp. 232-241, 2005. https://doi.org/10.1016/j.neucom.2005.06.005
  9. L. M. Pecora and T. L. Carroll, "Synchronization in chaotic systems," Physical Review Letters, vol. 64, no. 8, pp. 821-824, 1990. https://doi.org/10.1103/PhysRevLett.64.821
  10. L. Lu, C. Zhang, and Z. A. Guo, "Synchronization between two different chaotic systems with nonlinear feedback control," Chinese Physics, vol. 16, no. 6, pp. 1603-07, 2007. https://doi.org/10.1088/1009-1963/16/6/019
  11. H. N. Agiza and M. T. Yassen, "Synchronization of rossler and chen chaotic dynamical systems using active Control", Physical Letters A, vol. 278, no. 4, pp.191-197, 2001. https://doi.org/10.1016/S0375-9601(00)00777-5
  12. M. C. Ho and Y. C. Hung, "Synchronization of two different systems by using generalized active control", Physical Letters. A, vol. 301, no. 5-6, pp. 424-428, 2002. https://doi.org/10.1016/S0375-9601(02)00987-8
  13. X. Wu and J. Lu, "Parameter identification and backstepping control of uncertain Lu system," Chaos, Solitons and Fractals, vol. 18, no. 4, pp. 721-729, 2003. https://doi.org/10.1016/S0960-0779(02)00659-8
  14. M. Haeri and A. Emadzadeh, "Synchronizing different chaotic systems using active sliding mode control," Chaos, Solitons and Fractals, vol. 31, no. 1, pp. 119-129, 2007. https://doi.org/10.1016/j.chaos.2005.09.037
  15. V. Sundarapandian, "Global chaos synchronization of the pehlivan systems by sliding mode control", International Journal on Computer Science and Engineering, vol. 3, no. 5, pp. 19-28, 2011.
  16. J. Yan, M. Hung, T. Chiang, and Y. Yang, "Robust synchronization of chaotic systems via adaptive sliding mode control," Physics Letters A, vol. 356, no. 3, pp. 220-225, 2006. https://doi.org/10.1016/j.physleta.2006.03.047
  17. I. Pehlivan and Y. Uyaroglu, "A new chaotic attractor from general lorenz family and its electronic experimental implementation," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 18, pp. 171-184, 2010.

Cited by

  1. Design of a synchronization controller for non-rail mobile rack using repetitive control method vol.40, pp.6, 2016, https://doi.org/10.5916/jkosme.2016.40.6.527