DOI QR코드

DOI QR Code

초음파 전립선 영상에서 전립선 경계 분할을 위한 평균 형상 모델

An Average Shape Model for Segmenting Prostate Boundary of TRUS Prostate Image

  • 김상복 (경상대학교 컴퓨터과학과) ;
  • 정주영 (경상대학교 컴퓨터과학과) ;
  • 서영건 (경상대학교 컴퓨터과학과 대학원 문화융복합학과)
  • 투고 : 2013.12.24
  • 심사 : 2014.04.28
  • 발행 : 2014.05.31

초록

전립선암은 전립선에 나타나는 악성 종양이다. 현재 그 발병률이 높아지고 있다. 전립선암의 구조를 가장 정확하게 확인할 수 있는 검사 방법은 MRI를 이용하는 것이나, 그 비용 때문에 모든 환자에게 적용하기는 어려운 실정이다. 그래서 많은 환자들은 가격이 저렴한 초음파검사를 이용하여 전립선암을 진단하고 있다. 전통적으로 의사들은 영상을 눈으로 확인하여 전립선의 경계를 수동으로 분할하였다. 그러나 수동으로 분할하는 과정은 시간이 많이 소요되며, 의사에 따라서 그 경계가 일정하지 않게 얻어진다. 이 문제를 해결하기 위하여 전립선의 자동 분할에 관한 연구가 되었고, 환자들에게 신뢰를 줄 수 있었다. 본 연구는 초음파 전립선 영상에서 전립선의 경계를 분할하는데 평균 형상 모델을 적용하는 것이다. 먼저, 에지 분포를 이용하여 프로브를 찾고, 프로브와 연결된 두 직선을 찾는다. 이 후에 이 정보를 이용하여 전립선 영상 위에 평균 형상을 위치시킨다.

Prostate cancer is a malignant tumor occurring in the prostate. Recently, the repetition rate is increasing. Image inspection method which we can check the prostate structure the most correctly is MRI(Magnetic Resonance Imaging), but it is hard to apply it to all the patients because of the cost. So, they use mostly TRUS(Transrectal Ultrasound) images acquired from prostate ultrasound inspection and which are cheap and easy to inspect the prostate in the process of treating and diagnosing the prostate cancer. Traditionally, in the hospital the doctors saw the TRUS images by their eyes and manually segmented the boundary between the prostate and nonprostate. But the manually segmenting process not only needed too much time but also had different boundaries according to the doctor. To cope the problems, some automatic segmentations of the prostate have been studied to generate the constant segmentation results and get the belief from patients. In this study, we propose an average shape model to segment the prostate boundary in TRUS prostate image. The method has 3 steps. First, it finds the probe using edge distribution. Next, it finds two straight lines connected with the probe. Finally it puts the shape model to the image using the position of the probe and straight lines.

키워드

참고문헌

  1. Cancer Facts and Figures. American Cancer Society [Internet]. http://www.cancer.org.
  2. Mettlin C: American society national cancer detection project. Cancer, pp.1790-1794, 1995.
  3. [internet] http://www.cancer.go.kr
  4. A. Chakraborty, L. H. Staib, and J. S. Duncan, "Deformable Boundary Finding in Medical Images by Integrating Gradient and Region Information", IEEE Trans. on Medical Imaging., Vol.15, No.6, pp.859-870, Dec., 1996. https://doi.org/10.1109/42.544503
  5. P. D. Grimm, J. C. Balsko, and H. Ragde, "Ultrasound Guided Transperineal Implantation of Iodine 125 and Palladium 103 for the Treatment to Fearly Stage Prostate Cancer", Atlas Urol. Clin. no. Amer., Vol.2, pp.113-125, 1994.
  6. Y. Zhan and D. Shen, "Deformable Segmentation of 3-D Ultrasound Prostate Images Using Statistical Texture Matching Method", IEEE Trans. on Medical Imaging, Vol.25, pp.245-255, March, 2006. https://doi.org/10.1109/TMI.2005.862743
  7. A. Rafiee, A. Salimi, and A. Roostam, "A Novel Prostate Segmentation Algorithm in TRUS Images", World Academy of Science, Engineering and Technology 45, pp.120-124, 2008.
  8. S. D. Pathak, V. Chalana, D. R. Haynor, and Y. Kim, "Edge-guided Boundary Delineation in Prostate Ultrasound Images", IEEE Trans. on Medical Imaging, Vol.19, No.12, pp.1211-1219, Dec., 2000. https://doi.org/10.1109/42.897813
  9. D. Shen, Y. Zhan, and C. Davatzikos, "Segmentation Prostate Boundaries from Ultrasound Images Using Statistical Shape Model", IEEE Trans. on Medical. Imaging, Vol.22, No.4, pp.539-551, Apr., 2003. https://doi.org/10.1109/TMI.2003.809057
  10. F. Shao, K. V. Ling, and W. S. Ng, "3-D Prostate Surface Detection from Ultrasound Images Based on Level Set Method", Proc. MICCAI 2003, pp.389-396, 2003.
  11. P. Yan, S. Xu, B. Turkbey and J. Kruecker, "Adaptively Learning Local Shape Statistics for Prostate Segmentationin Ultrasound", IEEE Trans. On Biomedical Engineering, Vol.58, No.3, pp.633-641, Mar., 2011. https://doi.org/10.1109/TBME.2010.2094195
  12. H. Akbari, X. Yang, L. Halig and B. Fei, "3D Segmentation of Prostate Ultrasound Images Using Wavelet Transform", Proc. of SPIE 7962, 2011.
  13. Jong M. Park, Chang L. Yoon, and Sung G. Lee, "Survey about the Method of Image Segmentation", KIICS, Vol.21, No.1, pp.255-258, 1994.
  14. Betrouni, N, Puech, P., Dewalle, A.S., Vermandel. M, and Rousseau. J., "3D delineation of prostate, rectum and bladder on MI images", Computerized Medical Imaging and Graphics 32, pp.662-630, 2007.
  15. Klein, S. and etc, "Segmentation of the Prostate in MR Images by Atlas Matching", Biomedical Imaging, ISBI 2007. 4th IEEE International Symposium, pp.410-413, 2007.
  16. Betrouni, N and etc, "3D Automatic Segmentation and Reconstruction of Prostate on MR Images", IEEE Engineering in medicine and biology society, pp.5259-5262, 2007.
  17. Yanong S., Stuart W., and Peyer Z., "A Hybrid ASM Approach for Sparse Volumetric Data Segmentation", Pattern Recognition and Image Analysis, Vol.17, No.2, pp.252-258, 2007. https://doi.org/10.1134/S1054661807020125

피인용 문헌

  1. Detecting the Prostate Boundary with Gabor Texture Features Average Shape Model of TRUS Prostate Image vol.16, pp.5, 2015, https://doi.org/10.9728/dcs.2015.16.5.717