DOI QR코드

DOI QR Code

Reproduction of Epstein-Barr Virus Infection and Pathogenesis in Humanized Mice

  • Fujiwara, Shigeyoshi (Department of Infectious Diseases, National Research Institute for Child Health and Development)
  • Received : 2014.01.13
  • Accepted : 2014.01.28
  • Published : 2014.02.28

Abstract

Epstein-Barr virus (EBV) is etiologically associated with a variety of diseases including lymphoproliferative diseases, lymphomas, carcinomas, and autoimmune diseases. Humans are the only natural host of EBV and limited species of new-world monkeys can be infected with the virus in experimental conditions. Small animal models of EBV infection, required for evaluation of novel therapies and vaccines for EBV-associated diseases, have not been available. Recently the development of severely immunodeficient mouse strains enabled production of humanized mice in which human immune system components are reconstituted and express their normal functions. Humanized mice can serve as infection models for human-specific viruses such as EBV that target cells of the immune system. This review summarizes recent studies by the author's group addressing reproduction of EBV infection and pathogenesis in humanized mice.

Keywords

References

  1. Longnecker, R. M., E. Kieff, and J. I. Cohen. 2013. Epstein- Barr virus. In Fields Virology, 6th. ed. D. M. Knipe and P. M. Howley, eds. Lippincott Williams and Wlikins, Philadelphia, PA. p.1898-1959.
  2. Hislop, A. D., G. S. Taylor, D. Sauce, and A. B. Rickinson. 2007. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25: 587-617. https://doi.org/10.1146/annurev.immunol.25.022106.141553
  3. Shope, T., D. Dechairo, and G. Miller. 1973. Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 70: 2487-2491. https://doi.org/10.1073/pnas.70.9.2487
  4. Epstein, M. A., H. zur Hausen, G. Ball, and H. Rabin. 1975. Pilot experiments with EB virus in owl monkeys (Aotus trivirgatus). III. Serological and biochemical findings in an animal with reticuloproliferative disease. Int. J. Cancer 15: 17-22. https://doi.org/10.1002/ijc.2910150103
  5. Johannessen, I. and D. H. Crawford. 1999. In vivo models for Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev. Med. Virol. 9: 263-277. https://doi.org/10.1002/(SICI)1099-1654(199910/12)9:4<263::AID-RMV256>3.0.CO;2-D
  6. Takashima, K., M. Ohashi, Y. Kitamura, K. Ando, K. Nagashima, H. Sugihara, K. Okuno, T. Sairenji, and K. Hayashi. 2008. A new animal model for primary and persistent Epstein-Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. J. Med. Virol. 80: 455-466. https://doi.org/10.1002/jmv.21102
  7. Ito, M., H. Hiramatsu, K. Kobayashi, K. Suzue, M. Kawahata, K. Hioki, Y. Ueyama, Y. Koyanagi, K. Sugamura, K. Tsuji, T. Heike, and T. Nakahata. 2002. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175-3182. https://doi.org/10.1182/blood-2001-12-0207
  8. Traggiai, E., L. Chicha, L. Mazzucchelli, L. Bronz, J. C. Piffaretti, A. Lanzavecchia, and M. G. Manz. 2004. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304: 104-107. https://doi.org/10.1126/science.1093933
  9. Shultz, L. D., B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger. 2005. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174: 6477-6489. https://doi.org/10.4049/jimmunol.174.10.6477
  10. Melkus, M. W., J. D. Estes, A. Padgett-Thomas, J. Gatlin, P. W. Denton, F. A. Othieno, A. K. Wege, A. T. Haase, and J. V. Garcia. 2006. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med. 12: 1316-1322. https://doi.org/10.1038/nm1431
  11. Fujiwara, S., G. Matsuda, and K. Imadome. 2013. Humanized mouse models of Epstein-Barr virus infection and associated diseases. Pathogens 2: 153-176. https://doi.org/10.3390/pathogens2010153
  12. Akkina, R. 2013. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435: 14-28. https://doi.org/10.1016/j.virol.2012.10.007
  13. Hiramatsu, H., R. Nishikomori, T. Heike, M. Ito, K. Kobayashi, K. Katamura, and T. Nakahata. 2003. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 102: 873-880. https://doi.org/10.1182/blood-2002-09-2755
  14. Watanabe, S., K. Terashima, S. Ohta, S. Horibata, M. Yajima, Y. Shiozawa, M. Z. Dewan, Z. Yu, M. Ito, T. Morio, N. Shimizu, M. Honda, and N. Yamamoto. 2007. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109: 212-218. https://doi.org/10.1182/blood-2006-04-017681
  15. Watanabe, S., S. Ohta, M. Yajima, K. Terashima, M. Ito, H. Mugishima, S. Fujiwara, K. Shimizu, M. Honda, N. Shimizu, and N. Yamamoto. 2007. Humanized NOD/SCID/IL2Rgamma (null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J. Virol. 81: 13259-13264. https://doi.org/10.1128/JVI.01353-07
  16. Yajima, M., K. Imadome, A. Nakagawa, S. Watanabe, K. Terashima, H. Nakamura, M. Ito, N. Shimizu, M. Honda, N. Yamamoto, and S. Fujiwara. 2008. A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J. Infect. Dis. 198: 673-682. https://doi.org/10.1086/590502
  17. Strowig, T., C. Gurer, A. Ploss, Y. F. Liu, F. Arrey, J. Sashihara, G. Koo, C. M. Rice, J. W. Young, A. Chadburn, J. I. Cohen, and C. Munz. 2009. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med. 206: 1423-1434. https://doi.org/10.1084/jem.20081720
  18. Ma, S. D., S. Hegde, K. H. Young, R. Sullivan, D. Rajesh, Y. Zhou, E. Jankowska-Gan, W. J. Burlingham, X. Sun, M. L. Gulley, W. Tang, J. E. Gumperz, and S. C. Kenney. 2011. A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J. Virol. 85: 165-177. https://doi.org/10.1128/JVI.01512-10
  19. Ma, S. D., X. Yu, J. E. Mertz, J. E. Gumperz, E. Reinheim, Y. Zhou, W. Tang, W. J. Burlingham, M. L. Gulley, and S. C. Kenney. 2012. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J. Virol. 86: 7976-7987. https://doi.org/10.1128/JVI.00770-12
  20. White, R. E., P. C. Ramer, K. N. Naresh, S. Meixlsperger, L. Pinaud, C. Rooney, B. Savoldo, R. Coutinho, C. Bodor, J. Gribben, H. A. Ibrahim, M. Bower, J. P. Nourse, M. K. Gandhi, J. Middeldorp, F. Z. Cader, P. Murray, C. Munz, and M. J. Allday. 2012. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Invest. 122: 1487-1502. https://doi.org/10.1172/JCI58092
  21. Wahl, A., S. D. Linnstaedt, C. Esoda, J. F. Krisko, F. Martinez-Torres, H. J. Delecluse, B. R. Cullen, and J. V. Garcia. 2013. A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J. Virol. 87: 5437-5446. https://doi.org/10.1128/JVI.00281-13
  22. Cocco, M., C. Bellan, R. Tussiwand, D. Corti, E. Traggiai, S. Lazzi, S. Mannucci, L. Bronz, N. Palummo, C. Ginanneschi,P. Tosi, A. Lanzavecchia, M. G. Manz, and L. Leoncini. 2008. $CD34^{+}$ cord blood cell-transplanted $Rag2^{-/-}$ $gamma(c)^{-/-}$ mice as a model for Epstein-Barr virus infection. Am. J. Pathol. 173: 1369-1378.
  23. McInnes, I. B. and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365: 2205-2219.
  24. Niller, H. H., H. Wolf, E. Ay, and J. Minarovits. 2011. Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease. Adv. Exp. Med. Biol. 711: 82-102. https://doi.org/10.1007/978-1-4419-8216-2_7
  25. Toussirot, E. and J. Roudier. 2007. Pathophysiological links between rheumatoid arthritis and the Epstein-Barr virus: an update. Joint Bone Spine 74: 418-426. https://doi.org/10.1016/j.jbspin.2007.05.001
  26. Takei, M., K. Mitamura, S. Fujiwara, T. Horie, J. Ryu, S. Osaka, S. Yoshino, and S. Sawada. 1997. Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int. Immunol. 9: 739-743. https://doi.org/10.1093/intimm/9.5.739
  27. Kuwana, Y., M. Takei, M. Yajima, K. Imadome, H. Inomata, M. Shiozaki, N. Ikumi, T. Nozaki, H. Shiraiwa, N. Kitamura, J. Takeuchi, S. Sawada, N. Yamamoto, N. Shimizu, M. Ito, and S. Fujiwara. 2011. Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS One 6: e26630. https://doi.org/10.1371/journal.pone.0026630
  28. Watanabe, Y., T. Takahashi, A. Okajima, M. Shiokawa, N. Ishii, I. Katano, R. Ito, M. Ito, M. Minegishi, N. Minegishi, S. Tsuchiya, and K. Sugamura. 2009. The analysis of the functions of human B and T cells in humanized NOD/shiscid/ gammac(null) (NOG) mice (hu-HSC NOG mice). Int. Immunol. 21: 843-858. https://doi.org/10.1093/intimm/dxp050
  29. Yajima, M., K. Imadome, A. Nakagawa, S. Watanabe, K. Terashima, H. Nakamura, M. Ito, N. Shimizu, N. Yamamoto, and S. Fujiwara. 2009. T cell-mediated control of Epstein-Barr virus infection in humanized mice. J. Infect. Dis. 200: 1611- 1615. https://doi.org/10.1086/644644
  30. Kikuta, H., Y. Sakiyama, S. Matsumoto, T. Oh-Ishi, T. Nakano, T. Nagashima, T. Oka, T. Hironaka, and K. Hirai. 1993. Fatal Epstein-Barr virus-associated hemophagocytic syndrome. Blood 82: 3259-3264.
  31. Kawaguchi, H., T. Miyashita, H. Herbst, G. Niedobitek, M. Asada, M. Tsuchida, R. Hanada, A. Kinoshita, M. Sakurai, N. Kobayashi, and S. Mizutani. 1993. Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J. Clin. Invest. 92: 1444-1450. https://doi.org/10.1172/JCI116721
  32. Kawa-Ha, K., S. Ishihara, T. Ninomiya, K. Yumura-Yagi, J. Hara, F. Murayama, A. Tawa, and K. Hirai. 1989. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA. J. Clin. Invest. 84: 51-55. https://doi.org/10.1172/JCI114168
  33. Jones, J. F., S. Shurin, C. Abramowsky, R. R. Tubbs, C. G. Sciotto, R. Wahl, J. Sands, D. Gottman, B. Z. Katz, and J. Sklar. 1988. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N. Engl. J. Med. 318: 733-741.
  34. Kikuta, H., Y. Taguchi, K. Tomizawa, K. Kojima, N. Kawamura, A. Ishizaka, Y. Sakiyama, S. Matsumoto, S. Imai, T. Kinoshita, S. Koizumi, T. Osato, I. Kobayashi, I. Hamada, and K. Hirai. 1988. Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333: 455-457. https://doi.org/10.1038/333455a0
  35. Ishihara, S., A. Tawa, K. Yumura-Yagi, M. Murata, J. Hara, H. Yabuuchi, K. Hirai, and K. Kawa-Ha. 1989. Clonal T-cell lymphoproliferation containing Epstein-Barr (EB) virus DNA in a patient with chronic active EB virus infection. Jpn. J. Cancer Res. 80: 99-101. https://doi.org/10.1111/j.1349-7006.1989.tb02273.x
  36. Imadome, K., M. Yajima, A. Arai, A. Nakazawa, F. Kawano, S. Ichikawa, N. Shimizu, N. Yamamoto, T. Morio, S. Ohga, H. Nakamura, M. Ito, O. Miura, J. Komano, and S. Fujiwara. 2011. Novel mouse xenograft models reveal a critical role of $CD4^{+}$ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog. 7: e1002326. https://doi.org/10.1371/journal.ppat.1002326
  37. Sato, K., N. Misawa, C. Nie, Y. Satou, D. Iwakiri, M. Matsuoka, R. Takahashi, K. Kuzushima, M. Ito, K. Takada, and Y. Koyanagi. 2011. A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 117: 5663-5673. https://doi.org/10.1182/blood-2010-09-305979
  38. Shultz, L. D., Y. Saito, Y. Najima, S. Tanaka, T. Ochi, M. Tomizawa, T. Doi, A. Sone, N. Suzuki, H. Fujiwara, M. Yasukawa, and F. Ishikawa. 2010. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc. Natl. Acad. Sci. USA 107: 13022- 13027. https://doi.org/10.1073/pnas.1000475107

Cited by

  1. Knockout of Epstein-Barr Virus BPLF1 Retards B-Cell Transformation and Lymphoma Formation in Humanized Mice vol.6, pp.5, 2014, https://doi.org/10.1128/mbio.01574-15
  2. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications vol.58, pp.1, 2014, https://doi.org/10.1080/10428194.2016.1179297