DOI QR코드

DOI QR Code

HVEM is a TNF Receptor with Multiple Regulatory Roles in the Mucosal Immune System

  • Shui, Jr-Wen (Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology) ;
  • Kronenberg, Mitchell (Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology)
  • Received : 2014.01.13
  • Accepted : 2014.03.20
  • Published : 2014.04.30

Abstract

The herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor receptor superfamily (TNFRSF), and therefore it is also known as TNFRSF14 or CD270 (1,2). In recent years, we have focused on understanding HVEM function in the mucosa of the intestine, particularly on the role of HVEM in colitis pathogenesis, host defense and regulation of the microbiota (2-4). HVEM is an unusual TNF receptor because of its high expression levels in the gut epithelium, its capacity to bind ligands that are not members of the TNF super family, including immunoglobulin (Ig) superfamily members BTLA and CD160, and its bi-directional functionality, acting as a signaling receptor or as a ligand for the receptor BTLA. Clinically, Hvem recently was reported as an inflammatory bowel disease (IBD) risk gene as a result of genome wide association studies (5,6). This suggests HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense and the microbiota. Consistent with this, using mouse models, we have revealed how HVEM is involved in colitis pathogenesis, mucosal host defense and epithelial immunity (3,7). Although further studies are needed, our results provide the fundamental basis for understanding why Hvem is an IBD risk gene, and they confirm that HVEM is a mucosal gatekeeper with multiple regulatory functions in the mucosa.

Keywords

References

  1. Murphy, T. L. and K. M. Murphy. 2010. Slow down and survive: Enigmatic immunoregulation by BTLA and HVEM. Annu. Rev. Immunol. 28: 389-411. https://doi.org/10.1146/annurev-immunol-030409-101202
  2. Shui, J. W. and M. Kronenberg. 2013. HVEM: An unusual TNF receptor family member important for mucosal innate immune responses to microbes. Gut Microbes 4: 146-151. https://doi.org/10.4161/gmic.23443
  3. Shui, J. W., A. Larange, G. Kim, J. L. Vela, S. Zahner, H. Cheroutre, and M. Kronenberg. 2012. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 488: 222-225. https://doi.org/10.1038/nature11242
  4. Steinberg, M. W., J. W. Shui, C. F. Ware, and M. Kronenberg. 2009. Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners. Semin. Immunopathol. 31: 207-221. https://doi.org/10.1007/s00281-009-0157-4
  5. Anderson, C. A., G. Boucher, C. W. Lees, A. Franke, M. D'Amato, K. D. Taylor, J. C. Lee, P. Goyette, M. Imielinski, A. Latiano, C. Lagace, R. Scott, L. Amininejad, S. Bumpstead, L. Baidoo, R. N. Baldassano, M. Barclay, T. M. Bayless, S. Brand, C. Buning, J. F. Colombel, L. A. Denson, M. De Vos, M. Dubinsky, C. Edwards, D. Ellinghaus, R. S. Fehrmann, J. A. Floyd, T. Florin, D. Franchimont, L. Franke, M. Georges, J. Glas, N. L. Glazer, S. L. Guthery, T. Haritunians, N. K. Hayward, J. P. Hugot, G. Jobin, D. Laukens, I. Lawrance, M. Lemann, A. Levine, C. Libioulle, E. Louis, D. P. McGovern, M. Milla, G. W. Montgomery, K. I. Morley, C. Mowat, A. Ng, W. Newman, R. A. Ophoff, L. Papi, O. Palmieri, L. Peyrin-Biroulet, J. Panes, A. Phillips, N. J. Prescott, D. D. Proctor, R. Roberts, R. Russell, P. Rutgeerts, J. Sanderson, M. Sans, P. Schumm, F. Seibold, Y. Sharma, L. A. Simms, M. Seielstad, A. H. Steinhart, S. R. Targan, L. H. van den Berg, M. Vatn, H. Verspaget, T. Walters, C. Wijmenga, D. C. Wilson, H. J. Westra, R. J. Xavier, Z. Z. Zhao, C. Y. Ponsioen, V. Andersen, L. Torkvist, M. Gazouli, N. P. Anagnou, T. H. Karlsen, L. Kupcinskas, J. Sventoraityte, J. C. Mansfield, S. Kugathasan, M. S. Silverberg, J. Halfvarson, J. I. Rotter, C. G. Mathew, A. M. Griffiths, R. Gearry, T. Ahmad, S. R. Brant, M. Chamaillard, J. Satsangi, J. H. Cho, S. Schreiber, M. J. Daly, J. C. Barrett, M. Parkes, V. Annese, H. Hakonarson, G. Radford-Smith, R. H. Duerr, S. Vermeire, R. K. Weersma, and J. D. Rioux. 2011. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43: 246-252. https://doi.org/10.1038/ng.764
  6. Jostins, L., S. Ripke, R. K. Weersma, R. H. Duerr, D. P. McGovern, K. Y. Hui, J. C. Lee, L. P. Schumm, Y. Sharma, C. A. Anderson, J. Essers, M. Mitrovic, K. Ning, I. Cleynen, E. Theatre, S. L. Spain, S. Raychaudhuri, P. Goyette, Z. Wei, C. Abraham, J. P. Achkar, T. Ahmad, L. Amininejad, A. N. Ananthakrishnan, V. Andersen, J. M. Andrews, L. Baidoo, T. Balschun, P. A. Bampton, A. Bitton, G. Boucher, S. Brand, C. Buning, A. Cohain, S. Cichon, M. D'Amato, D. De Jong, K. L. Devaney, M. Dubinsky, C. Edwards, D. Ellinghaus, L. R. Ferguson, D. Franchimont, K. Fransen, R. Gearry, M. Georges, C. Gieger, J. Glas, T. Haritunians, A. Hart, C. Hawkey, M. Hedl, X. Hu, T. H. Karlsen, L. Kupcinskas, S. Kugathasan, A. Latiano, D. Laukens, I. C. Lawrance, C. W. Lees, E. Louis, G. Mahy, J. Mansfield, A. R. Morgan, C. Mowat, W. Newman, O. Palmieri, C. Y. Ponsioen, U. Potocnik, N. J. Prescott, M. Regueiro, J. I. Rotter, R. K. Russell, J. D. Sanderson, M. Sans, J. Satsangi, S. Schreiber, L. A. Simms, J. Sventoraityte, S. R. Targan, K. D. Taylor, M. Tremelling, H. W. Verspaget, M. De Vos, C. Wijmenga, D. C. Wilson, J. Winkelmann, R. J. Xavier, S. Zeissig, B. Zhang, C. K. Zhang, H. Zhao, M. S. Silverberg, V. Annese, H. Hakonarson, S. R. Brant, G. Radford-Smith, C. G. Mathew, J. D. Rioux, E. E. Schadt, M. J. Daly, A. Franke, M. Parkes, S. Vermeire, J. C. Barrett, and J. H. Cho. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491: 119-124. https://doi.org/10.1038/nature11582
  7. Steinberg, M. W., O. Turovskaya, R. B. Shaikh, G. Kim, D. F. McCole, K. Pfeffer, K. M. Murphy, C. F. Ware, and M. Kronenberg. 2008. A crucial role for HVEM and BTLA in preventing intestinal inflammation. J. Exp. Med. 205: 1463-1476. https://doi.org/10.1084/jem.20071160
  8. Wang, Y., S. K. Subudhi, R. A. Anders, J. Lo, Y. Sun, S. Blink, J. Wang, X. Liu, K. Mink, D. Degrandi, K. Pfeffer, and Y. X. Fu. 2005. The role of herpesvirus entry mediator as a negative regulator of T cell-mediated responses. J. Clin. Invest. 115: 711-717. https://doi.org/10.1172/JCI200522982
  9. Schaer, C., S. Hiltbrunner, B. Ernst, C. Mueller, M. Kurrer, M. Kopf, and N. L. Harris. 2011. HVEM signalling promotes colitis. PLoS One 6: e18495. https://doi.org/10.1371/journal.pone.0018495
  10. Flynn, R., T. Hutchinson, K. M. Murphy, C. F. Ware, M. Croft, and S. Salek-Ardakani. 2013. CD8 T cell memory to a viral pathogen requires trans cosignaling between HVEM and BTLA. PLoS One 8: e77991. https://doi.org/10.1371/journal.pone.0077991
  11. Steinberg, M. W., Y. Huang, Y. Wang-Zhu, C. F. Ware, H. Cheroutre, and M. Kronenberg. 2013. BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection. PLoS One 8: e77992. https://doi.org/10.1371/journal.pone.0077992
  12. Basu, R., D. B. O'Quinn, D. J. Silberger, T. R. Schoeb, L. Fouser, W. Ouyang, R. D. Hatton, and C. T. Weaver. 2012. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37: 1061-1075. https://doi.org/10.1016/j.immuni.2012.08.024
  13. Zheng, Y., P. A. Valdez, D. M. Danilenko, Y. Hu, S. M. Sa, Q. Gong, A. R. Abbas, Z. Modrusan, N. Ghilardi, F. J. de Sauvage, and W. Ouyang. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14: 282-289. https://doi.org/10.1038/nm1720
  14. Pickert, G., C. Neufert, M. Leppkes, Y. Zheng, N. Wittkopf, M. Warntjen, H. A. Lehr, S. Hirth, B. Weigmann, S. Wirtz, W. Ouyang, M. F. Neurath, and C. Becker. 2009. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206: 1465-1472. https://doi.org/10.1084/jem.20082683
  15. Milner, J. D., J. M. Brenchley, A. Laurence, A. F. Freeman, B. J. Hill, K. M. Elias, Y. Kanno, C. Spalding, H. Z. Elloumi, M. L. Paulson, J. Davis, A. Hsu, A. I. Asher, J. O'Shea, S. M. Holland, W. E. Paul, and D. C. Douek. 2008. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452: 773-776. https://doi.org/10.1038/nature06764

Cited by

  1. Herpesvirus Entry Mediator on Radiation-Resistant Cell Lineages Promotes Ocular Herpes Simplex Virus 1 Pathogenesis in an Entry-Independent Manner vol.6, pp.5, 2015, https://doi.org/10.1128/mbio.01532-15
  2. Cutting Edge: The BTLA–HVEM Regulatory Pathway Interferes with Protective Immunity to Intestinal Helminth Infection vol.194, pp.4, 2014, https://doi.org/10.4049/jimmunol.1402510
  3. Identification of the long, edited dsRNAome of LPS-stimulated immune cells vol.26, pp.6, 2016, https://doi.org/10.1101/gr.203992.116
  4. Herpesvirus Entry Mediator and Ocular Herpesvirus Infection: More than Meets the Eye vol.91, pp.13, 2017, https://doi.org/10.1128/jvi.00115-17
  5. Aberrant Expressions of Co-stimulatory and Co-inhibitory Molecules in Autoimmune Diseases vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.00261
  6. Characterization of Sex Differences in Ocular Herpes Simplex Virus 1 Infection and Herpes Stromal Keratitis Pathogenesis of Wild-Type and Herpesvirus Entry Mediator Knockout Mice vol.4, pp.2, 2019, https://doi.org/10.1128/msphere.00073-19
  7. Immune checkpoint molecule herpes virus entry mediator is overexpressed and associated with poor prognosis in human glioblastoma vol.43, pp.None, 2014, https://doi.org/10.1016/j.ebiom.2019.04.002
  8. In Vitro Zika Virus Infection of Human Neural Progenitor Cells: Meta-Analysis of RNA-Seq Assays vol.8, pp.2, 2020, https://doi.org/10.3390/microorganisms8020270
  9. Investigation of IL-4, IL-10 , and HVEM polymorphisms with esophageal squamous cell carcinoma: a case–control study involving 1929 participants vol.40, pp.8, 2020, https://doi.org/10.1042/bsr20193895
  10. Unmasking Unique Immune Altering Aspects of the Microbiome as a Tool to Correct Sepsis-Induced Immune Dysfunction vol.22, pp.4, 2014, https://doi.org/10.1089/sur.2020.233
  11. Single-cell analyses of Crohn’s disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions vol.12, pp.1, 2014, https://doi.org/10.1038/s41467-021-22164-6