DOI QR코드

DOI QR Code

Study on Analysis Method for Fire Safety Test of Hydrant Reducing Valve for Offshore Plant

해양 플랜트용 Hydrant Reducing Valve의 화재 안전시험에 대한 해석 기법 연구

  • Received : 2013.09.23
  • Accepted : 2014.04.05
  • Published : 2014.06.01

Abstract

An offshore plant is vulnerable to fire because of the isolated environment. In particular, the damage to an offshore plant is increased when a hydrant reducing valve, which is a main piece of equipment in an offshore plant, is damaged in a fire. In this study, we conducted a fire safety test for a hydrant reducing valve and proved the validity of our analysis by comparing the results of the test and analysis. Therefore, we here suggest an analysis method for a fire safety test. FSI(fluid structure interaction) was considered in the fire safety test. The reliability of the analysis method was verified by comparing the temperature distributions of the test and analysis. In addition, we verified the problems that were caused in the fire safety test by conducting a structure analysis. At a result, the main problem was found to be deformation of the valve seat.

해양플랜트는 고립된 한경 특성상 화재에 취약하다. 특히 해양플랜트의 주요 기자재인 소화용 감압 밸브가 피해를 입었을 때 해양플랜트의 피해는 증가한다. 본 논문에서는 해양플랜트에 사용되는 소화용 감압밸브에 대한 화재 안전시험을 수행하고 그 결과를 수치해석 결과와 비교, 분석하여 해석의 타당성을 증명하고 화재 안전시험에 대한 해석 기법을 제시하였다. 화재 안전시험의 화염을 구현하기 위해 FSI를 이용하였으며 화재 안전시험의 온도 분포와 해석 결과 온도분포의 비교를 통해 해석 기법의 신뢰성을 확인하였다. 또한, 화재 안전시험에서 나타난 문제점을 구조해석을 통해 검증하였으며 그 결과 시트의 변형이 문제점으로 나타났다.

Keywords

References

  1. Kim, D. K. and Kim, J. H., 2007, "A Study in Structural Analysis of Globe Valve for LNG Carrier," Journal of the Korean Society of Marine Engineering, Vol. 31, No. 8, pp. 1013-1019. https://doi.org/10.5916/jkosme.2007.31.8.1013
  2. Park, Y. H., Kim, S. W. and Kim, B. K., 2013, " The Performance of a New Pressure Reducing Valve Automatically Preventing Pressure Equalization," J. Kor. Inst. Sci. Eng., Vol. 27, No. 1, pp. 26-30. https://doi.org/10.7731/KIFSE.2013.27.1.026
  3. Park, S. B., Kim, J. M., Lee, C. J. and Kang, J. H., 2012, "A Study on the Flow Characteristic of High Pressure 3/2-Way Valve for a Ship Engine," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 11, No. 3, pp. 35-40.
  4. Lee, B. H., Jeon, B. H. and Kang S. M., 2009, "A Study on the Flow Characteristics Through Industrial Butterfly Valve," The Spring Conference, KSME, pp. 277-283.
  5. ANSYS CFX, "Release 14.0 Theory Guide," SAS IP, 2011.
  6. Kim, S. B., Lee, J. H., Lee, G. H., Jeon, R. W. and Do, T. W., 2011, "Thermal- Structural Coupled Field Analysis for Fire Safety Type Ball Valve," Journal of the Korean Society of Manufacturing Process Engineers," Vol. 10, No. 3, pp. 28-32.
  7. Lee, J. H., Kim, K. K., Ro, S. T., Chung, H. S. and Kim, S. G., 2003, "A Study on the Thermal Analysis of Spray Cooling for the Membrane Type LNGC During the Cool-Down Period," Trans. Korean Soc. Mech..Eng. B, Vol. 27, No. 1, pp. 125-134. https://doi.org/10.3795/KSME-B.2003.27.1.125
  8. Lee, N. S. and Hong, S. D., 2013, "Evaluation of High-Temperature Structural Integrity Using Lab- Scale PCHE Prototype," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 9, pp. 1189-1194. https://doi.org/10.3795/KSME-A.2013.37.9.1189
  9. Choi, D. K. and Kim, 1998, "A Study on Relaxation of Thermal Stresses of Heat-Resistant Systems," Trans. Korean Soc. Mech. Eng. A, Vol. 22, No. 1, pp. 16-22.
  10. Park, S. H., Kim, S. K. and Ha, M. Y., 2013, "Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 11, pp. 999-1007. https://doi.org/10.3795/KSME-B.2013.37.11.999
  11. Jung, T. S. and Hwan, H. K., 2013, "Investigation of Natural Convective Heat Flow Characteristics of Heat Sink," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 1, pp. 27-33. https://doi.org/10.3795/KSME-B.2013.37.1.027
  12. Lee, G. H., Bang, Y. S. and Woo, S. W., 2012, "Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 3, pp. 363-369. https://doi.org/10.3795/KSME-B.2012.36.3.363
  13. Aydemir, N. U., Magapu, V. K., Sousa, A. C. M. and Venart, J. E. S., 1988, "Thermal Response Analysis of LPG Tanks Exposed to Fire," Journal of Hazardous Materials, Vol. 20, No. 1, pp. 239-262. https://doi.org/10.1016/0304-3894(88)87015-8
  14. Michael Birk, A., Vandersteen, D. J., Cunningham, M. H., Davison, C. R. and Mirzazadeh, I., 2002, "Fire Tests to Study the Effect of Pressure Relief Blowdown on the Survivability of Propane Tanks in Fires," Process Safety Progress, Vol. 21, No. 3, pp. 227-236. https://doi.org/10.1002/prs.680210308
  15. Yang Qi, 2002, "A Study on the Reliability of Fire Water Supply System in High-Rise Buildings," Fire Technology, Vol. 38, No. 1, pp. 71-79. https://doi.org/10.1023/A:1013432915911