DOI QR코드

DOI QR Code

SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM

  • Jin, Dae Ho (Department of Mathematics Dongguk University)
  • 투고 : 2014.02.06
  • 심사 : 2014.05.26
  • 발행 : 2014.05.31

초록

We study the geometry of lightlike submanifolds of a semi-Riemannian manifold. The purpose of this paper is to prove two singular theorems for irrotational lightlike submanifolds M of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that the structure vector field of $\bar{M}(c)$ is tangent to M.

키워드

참고문헌

  1. Ageshe, N.S. and Cha e, M.R.: A semi-symmetric non-metric connection on a Rie-mannian manifold, Indian J. Pure Appl. Math., 23(6), 1992, 399-409.
  2. Calin, C.: Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Iasi, Romania, 1998.
  3. Duggal, K.L. and Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  4. Duggal, K.L. and Jin, D.H.: Null curves and Hypersurfaces of Semi-Riemannian Man-ifolds, World Scientific, 2007.
  5. Duggal, K.L. and Sahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci., 2007, Art ID 57585, 1-21.
  6. Duggal, K.L. and Sahin, B.: Generalized Cauchy-Riemann lightlike Submanifolds of indefinite Sasakian manifolds, Acta Math. Hungar., 122(1-2), 2009, 45-58. https://doi.org/10.1007/s10474-008-7221-8
  7. Duggal, K.L. and Sahin, B.: Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.
  8. Jin, D.H.: Ascreen lightlike hypersurfaces of an indefinite Sasakian manifold, J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 20(1), 2013, 25-35. https://doi.org/10.7468/jksmeb.2013.20.1.25
  9. Jin, D.H.: Geometry of lightlike hypersurfaces of a semi-Riemannian space form with a semi-symmetric non-metric connection, submitted in Indian J. Pure Appl. Math.
  10. Jin, D.H.: Einstein lightlike hypersurfaces of a Lorentz space form with a semi-symmetric non-metric connection, Bull. Korean Math. Soc. 50(4), 2013, 1367-1376. https://doi.org/10.4134/BKMS.2013.50.4.1367
  11. Jin, D.H.: Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection, J. of Ineq. and Appl., 2013, 2013:403. https://doi.org/10.1186/1029-242X-2013-403
  12. Jin, D.H.: Lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection, J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 19(3), 2012, 211-228. https://doi.org/10.7468/jksmeb.2012.19.3.211
  13. Jin, D.H and Lee, J.W.: A classification of half lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection, Bull. Korean Math. Soc. 50(3), 2013, 705-717. https://doi.org/10.4134/BKMS.2013.50.3.705
  14. Kang, T.H., Jung, S.D., Kim, B.H., Pak, H.K. and Pak, J.S.: Lightlike hypersurfaces of indefinite Sasakian manifolds, Indian J. Pure Appl. Math., 34, 2003, 1369-1380.
  15. Kupeli, D.N.: Singular Semi-Riemannian Geometry, Kluwer Academic, 366, 1996.
  16. Massamba, F.: Screen almost conformal lightlike geometry in indefinite Kenmotsu space forms, Int. Electron. J. Geom., 5(2), 2012, 36-58.
  17. Yasar, E., Coken, A.C. and Yucesan, A.: Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102, 2008, 253-264. https://doi.org/10.7146/math.scand.a-15061