참고문헌
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funt. Anal., 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- S. Bae, Positive global solutions of inhomogenuous semilinear elliptic equations with critical sobolev exponent, Preprint.
- H. Brezis and E. Lieb, A relation between pointwise convergence of functionals and convergence of functions,, Proc. Amer. Soc., 88 (1983), 486-490. https://doi.org/10.1090/S0002-9939-1983-0699419-3
- H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437-427. https://doi.org/10.1002/cpa.3160360405
-
D.-M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equations on
$\mathbb{R}^N$ , Nonlinear Anal. T.M.A., 15(1990), 1048-1052. - Y. Deng and Li. Y, Existence and bifurcation of positive solutions for a semilinear elliptic equation with critical exponent, J. Diff. Equa., 130 (1996), 179-200. https://doi.org/10.1006/jdeq.1996.0138
- Y. Deng and Li. Y, Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2(1997), 361-382.
- W.-Y. Ding and W.-M. Ni On the existence of positive solutions for a semilinear elliptic equation, Archs Ration Mech. Analysis, 91(1986), 283-307. https://doi.org/10.1007/BF00282336
- L. Ekeland, Convex minimization problem, Bull. Amer. Math. Soc., (NS)1 (1976), 443-474.
- L. Caffarely, G. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math 42(1986), 271-1191.
- N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equations, Nonlinear Analysis. T.M.A., 29(8) (1997), 889-901. https://doi.org/10.1016/S0362-546X(96)00176-9
-
N. Hirano, Multiple existence of solutions for a nonhomogeneous elliptic problems on
$\mathbb{R}^N$ , J. Math. Anal. Appl., 336 (2007), 506-522. https://doi.org/10.1016/j.jmaa.2007.02.070 -
N. Hirano and W. S. Kim, Multiple existence of solutions for a nonhomogeneous elliptic problem with critical exponent on
$\mathbb{R}^N$ , J. Diff. Equa, 249,(2010), 1799-1816. https://doi.org/10.1016/j.jde.2010.05.003 -
N. Hirano and W. S. Kim, Multiple existence of solutions for a nonhomogeneous elliptic problem on
$\mathbb{R}^N$ , Nonlinear Analysis. T.M.A., 74,(2011), 4369-4378. https://doi.org/10.1016/j.na.2011.03.042 -
M. K. Kwong, Uniqueness of positive solution of
${\Delta}u- u+u^p=0\;in\;R^N$ , Arch. Retional Mech. Anal. 105(3), (1989), 243-266. - P.L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. part 1, Ann. Inst. H. Poincare Analyse non Lineaire, 1(2)(1984), 109-145,. https://doi.org/10.1016/S0294-1449(16)30428-0
- P.L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. part 2, Ann. Inst. H. Poincare Analyse non Lineaire, 1(4)(1984), 223-283,. https://doi.org/10.1016/S0294-1449(16)30422-X
- W.A. Strauss, Existence of solatary waves in higher dimensions, Communs. Math. Phys., 55(1977), 149-162. https://doi.org/10.1007/BF01626517
- M. Willem, Minimax theorems, Birkhauser. Boston, Basel, Berlin. (1996).
- X.-P. Zhu, Multiple entire solutions of a semilinear elliptic equation, Nonlinear analysis T.M.A., 12(11) (1988), 1297-1316. https://doi.org/10.1016/0362-546X(88)90061-2
- X.-P. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Diff. Equa, 92 (1991) 163-178. https://doi.org/10.1016/0022-0396(91)90045-B
- X.-P. Zhu, and H.-S. Zhu, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domain , Proc. Roy. Soc. Edinburgh , 115 A (1990) 301-318.
피인용 문헌
- PARAMETRIZED PERTURBATION RESULTS ON GLOBAL POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS AND HARDY TEREMS vol.34, pp.5, 2014, https://doi.org/10.7858/eamj.2018.035