East Asian Math. J.
Vol. 30 (2014), No. 3, pp. 335-353
http://dx.doi.org/10.7858/eamj.2014.024

# MULTIPLE EXISTENCE OF POSITIVE GLOBAL SOLUTIONS FOR PARAMETERIZED NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL EXPONENTS 

Wan Se Kim ${ }^{1}$


#### Abstract

We establish multiple extence of positive solutions for parameterized nonhomogeneous elliptic equations involving critical Sobolev exponent. The approach to the problem is variational method


## 1. Introduction

Let $N \geq 3$ and $2^{*}:=2 N /(N-2)$. Let consider a Hilbert space

$$
H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): \nabla u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

with the inner product

$$
(u, v):=\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla v+u v) d x
$$

and the corresponding norm

$$
\|u\|:=\left(\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+|u|^{2}\right) d x\right)^{1 / 2} .
$$

Let $\Omega$ be an open subset of $\mathbb{R}^{N}$. The space $H_{0}^{1}(\Omega)$ is the closure of $C_{c}^{\infty}(\Omega)$ in $H^{1}\left(\mathbb{R}^{N}\right)$. By $H^{-1}(\Omega)$, we denote its dual with the dual norm $\|\cdot\|_{*}$ and, by $\langle$,$\rangle , the pairing of H^{1}\left(\mathbb{R}^{N}\right)$ with its dual. We denote by $\|\cdot\|_{p}$ the usual norm of $L^{p}\left(\mathbb{R}^{N}\right)$ for $p \in[1, \infty]$.

The space

$$
D^{1,2}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{N}\right): \nabla u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

with the inner product

$$
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v d x
$$

and the corresponding norm

$$
\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x\right)^{1 / 2}
$$

is also a Hilbert space. The space $D_{0}^{1,2}(\Omega)$ is the closure of $C_{c}^{\infty}(\Omega)$ in $D^{1,2}\left(R^{N}\right)$. We note that $D^{1,2}\left(\mathbb{R}^{N}\right)=D_{0}^{1,2}\left(\mathbb{R}^{N}\right)$ and $H_{0}^{1}(\Omega) \subset D_{0}^{1,2}(\Omega)$. And, by the Poincare inequality, $H_{0}^{1}(\Omega)=$

[^0]$D_{0}^{1,2}(\Omega)$ if $|\Omega|<\infty$. If $N \geq 3$, then we also have a continuous embedding $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow$ $L^{p}\left(\mathbb{R}^{N}\right), 2 \leq p \leq 2^{*}$ and $D^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right)(c f .[19])$.

In this paper, we are concerned with the existence of multiple solutions of the following problem:
$\left(P_{\mu}\right)$

$$
\left\{\begin{array}{l}
-\Delta u+u=u^{2^{*}-1}+\mu f \text { in } \mathbb{R}^{N}, \\
u>0 \text { in } \mathbb{R}^{N}, N \geq 3
\end{array}\right.
$$

where $\mu \in \mathbb{R}^{+}, f \in H^{-1}\left(\mathbb{R}^{N}\right), f \geq 0$ and $f \not \equiv 0$ in $\mathbb{R}^{N}$.
A well-known result for the homoneneous case is that all positive regular solution of

$$
-\Delta u=u^{2^{*-1}}=0
$$

in $\mathbb{R}^{N}$ are given by

$$
\omega_{\epsilon}=\left(\frac{\epsilon \sqrt{N(N-2)}}{\epsilon^{2}+|x|^{2}}\right)^{(N-2) / 2}
$$

with $\epsilon>0\left(c f\right.$. [10]). Every $\omega_{\epsilon}$ is a minimizer for the embedding $D^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right)$. Namely, the Sobolev constant

$$
S=\inf _{0 \neq u \in D^{1,2}\left(\mathbb{R}^{N}\right)} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}}
$$

is achived by $\omega_{\epsilon}$ and

$$
\begin{equation*}
\left\|\nabla \omega_{\epsilon}\right\|_{2}^{2}=\left\|\omega_{\epsilon}\right\|_{2^{*}}^{2^{*}}=S^{N / 2} . \tag{1,1}
\end{equation*}
$$

For convenience, we omit " $\mathbb{R}^{N}$ " and " $d x$ " in integration and, throughout this paper, we will use the letter $C>0$ to denote the natural various contents independent of $u$.

Our attempt to show multiplicity of positive solutions for problem $\left(P_{\mu}\right)$ relies on the Ekeland's variational principle in [9] and the Mountain Pass Theorem in [4]. Since our problem $\left(P_{\mu}\right)$ posesses the critical nonlinearity and the embedding $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right)$ is not compact, in taking the opportunity of variational structure of problem, the ( $P S$ ) condition is no longer valid and so the Mountain Pass Theorem in [1] could not be applied directly. However, we can use the Mountain Pass Theorem without the $(P S)$ condition in [4] to get some $(P S)_{c}$ sequence of the variational functional for the second solution with $c>0$.

In the last decade, the existence and properties of solutions of the problem:

$$
\left\{\begin{array}{l}
-\Delta u+u=g(x, u), u>0 \text { in } \mathbb{R}^{N},  \tag{0}\\
u \in H^{1}\left(\mathbb{R}^{N}\right), N \geq 2
\end{array}\right.
$$

has been stuied by Struss[18], Lions[16, 17], Ding and Ni[8], Cao[5], Zhu[20](cf. [15] ) and other authors for the case where $g(x, 0)=0$ on $\mathbb{R}^{N}$ and $g(x, t)$ has a subcritical superlinear growth. On the other hand, the nonhomogeneous problem with $1<p<2^{*}-1$ :

$$
\left\{\begin{array}{l}
-\Delta u+u=|u|^{p-2} u+\mu f, u>0 \text { in } \mathbb{R}^{N},  \tag{P}\\
u \in H^{1}\left(\mathbb{R}^{N}\right), N \geq 2,
\end{array}\right.
$$

where $\mu \in \mathbb{R}^{+}, f \geq 0, f \in L^{2}\left(\mathbb{R}^{N}\right)$ with an exponential decay on $\mathbb{R}^{N}$, was studied by Zhu[21](cf. also [11]). In [21], the existence of at least two solutions of $(P)$ was proved was proved for positive functions $f \in L^{2}\left(\mathbb{R}^{N}\right)$ with a small $L^{2}$-norm and exponential decay $f(x) \leq \operatorname{Cexp}\{-(1+\epsilon)|x|\}$, for $x \in \mathbb{R}^{N}$. The multiplicity of positive solutions for problem $(P)$
for the subcritical case was stuied by Deng and $\operatorname{Li}[7]$. In [12], the existence of at least four solutions of $(P)$ with $N \geq 3$ was established. In the critical case $p=2^{*}$, the problem is much more difficult than the subcritical case. As we mentioned, the Palais-Smale condition does not hold at some critical levels and the effect of the nonhomogeneous term $f$ to the multiple existence of solutions is delicate. The multiplicity of the solutions of $(P)$, also $\left(P_{\mu}\right)$, depends not only on the norm of $f$, but also the decay rate and the shape of $f$. In [6], it has shown that if $N<6$ and $|x|^{N-2} f$ is bounded, then there exists $\mu^{*}>0$ such that problem $(P)$ has at least two positive solutions with $\mu \in\left(0, \mu^{*}\right)$. In case that $N \geq 6$, there exist $\mu^{* *}, \mu_{*}>0$ with $\mu_{*}<\mu^{* *}$ such that for each $\mu \in\left(\mu^{* *}, \mu^{*}\right)$, problem $(P)$ possesses two positive solutions and for $\mu \in\left(0, \mu_{*}\right)$, problem $(P)$ has a unique solution(See also [7] for subcritical case). For nonhomogeneous case with critical growth nonlinearity, we refer [2]. The effact of the shape of the multiplicity of $(P)$ was investigated in [14]. In [13], the authors consider the multiplicity of solutions of $(P)$ with $-\Delta+I$ replaced by $-\Delta+\alpha I$ and $\alpha>0$. Authors assume that $p=2^{*}, 3 \leq N \leq 5, f \in L^{2^{*} /\left(2^{*}-1\right)}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ with $f \geq 0$ and $f \not \equiv 0$, and $|x|^{N-2} f$ is bounded. It was shown that there exist $\mu_{*}$ and a function $\alpha:\left(0, \mu_{*}\right) \rightarrow \mathbb{R}^{+}$such that for each $\alpha \in(0, \alpha(\mu))$, problem $(P)$ posesses at least three solutions; if we assume there exist exactly two positive solutions then the third solution is sign-changing. In our results we do not assume the decay rate on $f$ but uniform boundedness of $f$ which is independent of solution $u$ and $x \in \mathbb{R}^{N}$. There seems to have been a little progress on existence theory.

We can now state our main results:
Proposition 2.3. Assume $f \in H^{-1}\left(\mathbb{R}^{N}\right), f(x) \geq 0, f(x) \not \equiv 0$ in $\mathbb{R}^{N}$ and $\|\mu f\|_{*} \leq C_{N}^{*}$, then problem $\left(P_{\mu}\right)$ has at least one positive solution $u_{\mu}$ such that

$$
\begin{equation*}
I_{\mu}\left(u_{\mu}\right):=c_{1}=\inf \left\{I_{\mu}: u \in \bar{B}_{R_{0}}\right\} \tag{2.1}
\end{equation*}
$$

where $\bar{B}_{R_{0}}=\left\{u \in H^{1}\left(R^{N}\right):\|u\| \leq R_{0}\right\}$.

Proposition 2.5. Suppose that $f \in H^{-1}\left(\mathbb{R}^{N}\right), f \geq 0, f \not \equiv 0$ in $\mathbb{R}^{N}$ and $\|\mu f\|_{*} \leq C_{N}^{*}$. Then there exist $\tilde{\mu} \geq \bar{\mu}>0$ such that $\left(P_{\mu}\right)$ possesses a positive solution for $0<\mu \leq \tilde{\mu}$ and no positive solution for $\mu>\tilde{\mu}$.

Proposition 3.3. For $\mu=\mu^{*}$, the problem $\left(P_{\mu}\right)$ has a positive solution $u_{\mu^{*}}$ and $\lambda_{1}\left(\mu^{*}\right)=1$. Moreover, the solution $u_{\mu^{*}}$ is unique in $H^{1}\left(\mathbb{R}^{N}\right)$.

Theorem 3.8. Suppose $3 \leq N \leq 5$. Assume $f \in H^{-1}\left(\mathbb{R}^{N}\right), f \geq 0, f \not \equiv 0$ in $\mathbb{R}^{N}$ and $\|\mu f\|_{*} \leq C_{N}^{*}$. Then there exists a positive constant $\mu^{*}>0$ such that $\left(P_{\mu}\right)$ possesses at least two positive solutions for $0<\mu<\mu^{*}$, a unique solution for $\mu=\mu^{*}$ and no positive solution if $\mu>\mu^{*}$.

## 2. Existence of minimal positive solutions

Lemma 2.1. The operator $-\Delta+I$ has the maximum principle in $H^{1}\left(\mathbb{R}^{N}\right)$.
Proof. Let $h \geq 0$ and $-\Delta u+u=h$. Suppose that $u_{-} \not \equiv 0$, where $u_{+}=\max \{u(x), 0\}$ and $u_{-}=\min \{u(x), 0\}$. then $\left.0<\int\left|\nabla u_{-}\right|^{2}+\left|u_{-}\right|^{2}\right)=\int h u_{-} d x$ which leads a contradiction. This completes the proof.

In order to get the existence of positive solutions for $\left(P_{\mu}\right)$, we consider the energy functional $I_{\mu}$ of the problem $\left(P_{\mu}\right)$ defined by

$$
I_{\mu}(u)=\frac{1}{2} \int\left(|\nabla u|^{2}+|u|^{2}\right)-\frac{1}{2^{*}} \int\left(u^{+}\right)^{2^{*}}-\mu \int f u, \text { for } u \in H^{1}\left(\mathbb{R}^{N}\right) .
$$

First, we study the existence of a local mininum for energy functional $I_{\mu}$ and its properities. We denote

$$
\begin{equation*}
C_{N}^{*}=\frac{1}{2}\left(\frac{4}{N+2}\right)\left(\frac{N}{N+2}\right)^{(N-2) / 4} S^{N / 4} \tag{2,1}
\end{equation*}
$$

Lemma 2.2. Assume $f \in H^{-1}\left(\mathbb{R}^{N}\right), f(x) \geq 0, f(x) \not \equiv 0$ and $\|\mu f\|_{*} \leq C_{N}^{*}$, then there exits a positive const $R_{0}>0$ such that $I_{\mu}(u) \geq 0$ for any $u \in \partial B_{R_{0}}=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right):\|u\|=\right.$ $\left.R_{0}\right\}$.

Proof. We consider the function $h(t):[0,+\infty) \rightarrow \mathbb{R}^{N}$ defined by

$$
h(t)=\frac{1}{2} t-\frac{1}{2^{*}} S^{-2^{*} / 2} t^{2^{*}-1} .
$$

Note that $h(0)=0,2^{*}-1>1$ and $h(t) \rightarrow-\infty$ as $\mathrm{t} \rightarrow \infty$. We can show easly there a unique $t_{0}>0$ achieving the maxinum of $h(t)$ at $t_{0}$. Since

$$
h^{\prime}\left(t_{0}\right)=\frac{1}{2}-\frac{2^{*}-1}{2^{*}} S^{-2^{*} / 2} t_{0}^{2^{*}-2}=0
$$

we have

$$
t_{0}=\left[\frac{2^{*}}{2\left(2^{*}-1\right)}\right]^{1 /\left(2^{*}-2\right)} S^{2^{*} / 2\left(2^{*}-2\right)}
$$

Hence, we have

$$
\begin{equation*}
h\left(t_{0}\right)=\frac{1}{2}\left(\frac{4}{N+2}\right)\left(\frac{N}{N+2}\right)^{(N-2) / 4} S^{N / 4} . \tag{2,2}
\end{equation*}
$$

Taking $R_{0}=t_{0}$, for all $u \in \partial B_{R_{0}}$,

$$
\begin{align*}
I_{\mu}(u) & =\frac{1}{2} \int\left(|\nabla u|^{2}+|u|^{2}\right)-\frac{1}{2^{*}} \int\left(u^{+}\right)^{2^{*}}-\mu \int f u \\
& \geq \frac{1}{2}\|u\|^{2}-\frac{1}{2^{*}} S^{-2^{*} / 2}\|u\|^{2^{*}}-\|\mu f\|_{*}\|u\|  \tag{2,3}\\
& =t_{0}\left[h\left(t_{0}\right)-\|\mu f\|_{*}\right]
\end{align*}
$$

From $(2,2)$ and $(2,3)$, we have $\left.I_{\mu}(u)\right|_{\partial B_{R_{0}}} \geq 0 . ■$

Proposition 2.3. Assume $f \in H^{-1}\left(\mathbb{R}^{N}\right), f(x) \geq 0, f(x) \not \equiv 0$ in $\mathbb{R}^{N}$ and $\|\mu f\|_{*} \leq C_{N}^{*}$, then problem $\left(P_{\mu}\right)$ has at least one positive solution $u_{\mu}$ such that

$$
\begin{equation*}
I_{\mu}\left(u_{\mu}\right):=c_{1}=\inf \left\{I_{\mu}: u \in \bar{B}_{R_{0}}\right\}, \tag{2.1}
\end{equation*}
$$

where $\bar{B}_{R_{0}}=\left\{u \in H^{1}\left(R^{N}\right):\|u\| \leq R_{0}\right\}$.

Proof. By Sobolev inequality, the generalized Hölder and Young's inequality with $\epsilon>0$, there exists $C_{\epsilon}>0$, we have

$$
\begin{aligned}
I_{\mu}(u) & =\frac{1}{2} \int\left(|\nabla u|^{2}+|u|^{2}\right)-\frac{1}{2^{*}} \int\left(u^{+}\right)^{2^{*}}-\mu \int f u \\
& \geq \frac{1}{2}\|u\|^{2}-\frac{1}{2^{*}} S^{-2^{*} / 2}\|u\|^{2^{*}}-\|\mu f\|_{*}\|u\| \\
& \geq\left(\frac{1}{2}-\epsilon\right)\|u\|^{2}-\frac{1}{2^{*}} S^{-2^{*} / 2}\|u\|^{2^{*}}-C_{\epsilon}\|\mu f\|_{*}^{2} .
\end{aligned}
$$

Taking $\epsilon<\frac{1}{2}$, then, for $R_{0}=t_{0}$ as in Lemma 2,2, we can find a $C_{R_{0}}>0$ small enough such that

$$
\begin{equation*}
\left.I_{\mu}(u)\right|_{\partial B_{R_{0}}} \geq C_{R_{0}} \text { for }\|\mu f\|_{*} \leq C_{N}^{*} . \tag{2.2}
\end{equation*}
$$

Since there exists a $\tilde{C}_{R_{0}}>0$ such that $\left|I_{\mu}(u)\right| \leq \tilde{C}_{R_{0}}$ for all $u \in \bar{B}_{R_{0}}$ and $\bar{B}_{R_{0}}$ is a complete metric space with respect to the metric $d(u, v)=\|u-v\|, u, v \in \bar{B}_{R_{0}}$, by using the Ekeland's variational principle, from (2.2), we can prove that there exists a sequence $\left\{u_{n}\right\} \subset \bar{B}_{R_{0}}$ and $u_{\mu} \in \bar{B}_{R_{0}}$ such that

$$
\begin{align*}
I_{\mu}\left(u_{n}\right) & \rightarrow c_{1},  \tag{2.3}\\
I_{\mu}^{\prime}\left(u_{n}\right) & \rightarrow 0, \tag{2.4}
\end{align*}
$$

$$
\begin{gathered}
u_{n} \rightarrow u_{\mu} \text { weakly in } H^{1}\left(\mathbb{R}^{N}\right), \\
u_{n} \rightarrow u_{\mu} \text { a.e. in } \mathbb{R}^{N}, \\
\nabla u_{n} \rightarrow \nabla u_{\mu} \text { a.e. in } \mathbb{R}^{N}
\end{gathered}
$$

and

$$
u_{n}{ }^{2^{*}-1} \rightarrow u_{\mu}{ }^{2^{*}-1} \text { weakly } \quad \text { in }\left(L^{2^{*}}\left(\mathbb{R}^{N}\right)\right)^{*} \text { as } n \rightarrow \infty
$$

Therefore, $u_{\mu}$ is a weak solution of $\left(P_{\mu}\right)$. Hence,

$$
\begin{equation*}
\left\langle I_{\mu}^{\prime}\left(u_{\mu}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H^{1}\left(\mathbb{R}^{N}\right) \tag{2.6}
\end{equation*}
$$

Moreover, by Lemma 2.1, $u_{\mu}$ is positive on $\mathbb{R}^{N}$, where $I_{\mu}^{\prime}$ is the Fréchlet derivative of $I_{\mu}$.
Next, we are going to prove (2.1). In fact, by the definition of $c_{1}$, we know that $I_{\mu}\left(u_{\mu}\right) \geq c_{1}$ since $u_{\mu} \in \bar{B}_{R_{0}}$, that is,

$$
\begin{equation*}
I_{\mu}\left(u_{\mu}\right)=\frac{1}{2} \int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right)-\frac{1}{2^{*}} \int\left|u_{\mu}\right|^{2^{*}}-\mu \int f u_{\mu} \geq c_{1} \tag{2.7}
\end{equation*}
$$

By (2.6) and (2.7), we have

$$
\begin{equation*}
\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right)-\left(1-\frac{1}{2^{*}}\right) \mu \int f u_{\mu} \geq c_{1} \tag{2.8}
\end{equation*}
$$

On the other hand, by (2.3)-(2.5) and Fatou's lemma, we get

$$
\begin{align*}
c_{1} & =\liminf _{n}\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int\left(\left|\nabla u_{n}\right|^{2}+\left|u_{n}\right|^{2}\right)-\limsup _{n}\left(1-\frac{1}{2^{*}}\right) \mu \int f u_{n} \\
& \geq\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right)-\left(1-\frac{1}{2^{*}}\right) \mu \int f u_{\mu} . \tag{2.9}
\end{align*}
$$

Thus, (2.7) and (2.9) imply (2.1) holds. This completes the proof.

Remark. (1) $c_{1}<0$, (2) $c_{1}$ is bounded below, (3) $\left\|u_{\mu}\right\|=o(1)$ as $\mu \rightarrow 0^{+}$.
Indeed: (1) For $t>0$ and $\varphi>0$, we have

$$
I_{\mu}(t \varphi)=\frac{t^{2}}{2} \int\left(|\nabla \varphi|^{2}+|\varphi|^{2}\right)-\frac{t^{2^{*}}}{2^{*}} \int|\varphi|^{2^{*}}-t \mu \int f \varphi \leq \frac{t^{2}}{2}\|\varphi\|^{2}-t \mu \int f \varphi
$$

By taking $t>0$ sufficiently small, we can see $c_{1}<0$.
(2) By (2.9) with $\varphi=u_{\mu}$, and $c_{1}=I_{\mu}\left(u_{\mu}\right)$, we have

$$
\begin{align*}
c_{1} & =\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right)-\left(1-\frac{1}{2^{*}}\right) \mu \int f u_{\mu} \\
& \geq\left(\frac{1}{2}-\frac{1}{2^{*}}\right)\left\|u_{\mu}\right\|^{2}-\left(1-\frac{1}{2^{*}}\right)\|\mu f\|_{*}\left\|u_{\mu}\right\|  \tag{2.10}\\
& \geq-\frac{1}{22^{*}}\left[\frac{\left(2^{*}-1\right)^{2}}{2^{*}-2}\right]\|\mu f\|_{*}^{2}
\end{align*}
$$

by Young's inequality.
(3) Since $c_{1}<0$, from (2.10), we see that $\left\|u_{\mu}\right\| \rightarrow 0$ as $\mu \rightarrow 0^{+}$. Hence, $\left\|u_{\mu}\right\|=o(1)$ as $\mu \rightarrow 0^{+}$. We also have that $\left\|u_{\mu}\right\|_{\mu}$ is uniformly bounded with respect to $\mu$. We will restate results relating to this remark in Proposition 3.4 more precisely.

Proposition 2.4. Problem $\left(P_{\mu}\right)$ possesses at least one minimal positive solution of $\left(P_{\mu}\right)$.
Proof. Let $\mathcal{N}$ be the Nehari manifold (cf. [19]):

$$
\mathcal{N}=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): \int|\nabla u|^{2}+|u|^{2}=\int|u|^{2^{*}}+\int \mu f u\right\} \backslash\{0\}
$$

Note that $\|\mu f\|_{*} \ll 1$ for $\mu$ small enough and for each $u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, there exists a unique $t_{u}>0$ such that

$$
t_{u}^{2} \int|\nabla u|^{2}+|u|^{2}-t_{u}^{2^{*}} \int|u|^{2^{*}}-t_{u} \int \mu f u=0
$$

and $I_{\mu}\left(t_{u} u\right)>0$. Then

$$
\mathcal{N}=\left\{t_{u} u: u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}\right\}
$$

and

$$
\mathcal{N} \cong S^{N-1}=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right):\|u\|=1\right\}
$$

Hence,

$$
H^{1}\left(\mathbb{R}^{N}\right)=H_{1} \cup H_{2} \cup \mathcal{N}, \quad H_{1} \cap H_{2}=\phi \text { and } 0 \in H_{1},
$$

where

$$
\begin{aligned}
H_{1} & =\left\{t u: u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}, t \in\left[0, t_{u}\right)\right\} \\
H_{2} & =\left\{t u: u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}, t>t_{u}\right\}
\end{aligned}
$$

This implies that for $t>0$ with $t<t_{u}, t u \in H_{1}$.
Here, we need to switch our view point, by associating with $v$ a mapping

$$
v:\left[0, \infty\left[\rightarrow H^{1}\left(\mathbb{R}^{N}\right)\right.\right.
$$

defined by

$$
[v(t)] x=v(x, t), \quad x \in \mathbb{R}^{N}, t \in[0, \infty[.
$$

In other words, we consider $v$ not as a function of $x$ and $t$ together, but rather as a mapping $v$ of $t$ into the space $H^{1}\left(\mathbb{R}^{N}\right)$ of functions of $x$.

We have, for any $v_{0} \in H_{1}$, the solution $v$ of the initial value problem

$$
\left\{\begin{array}{l}
\frac{d v}{d t}-\Delta v+v=v^{2^{*}-1}+\mu f(x) \\
v(0)=v_{0}
\end{array}\right.
$$

converges to $u_{\mu}$ as $t \rightarrow \infty$,
Indeed, in the proof of Proposition 2.2, we know that $I_{\mu}(v(t))$ is decreasing and $\lim _{t \rightarrow \infty} I_{\mu}(v(t))=$ $I_{\mu}\left(u_{\mu}\right)$, where $I_{\mu}\left(u_{\mu}\right)$ is the local minimum.
Since

$$
\begin{aligned}
I_{\mu}(v(t))-I_{\mu}(v(s)) & =\int_{s}^{t} \frac{d}{d t} I_{\mu}(v(t)) d t \\
& =\int_{s}^{t}\left\langle\frac{d}{d t} v, \nabla I_{\mu}(v(t))\right\rangle d t \\
& =-\int_{t}^{s}\left\|\frac{d}{d t} v\right\|^{2} d t,
\end{aligned}
$$

we have, $\lim _{s, t \rightarrow \infty}\left\|\frac{d}{d t} v\right\|^{2}=0$. Thus, $v^{\prime} \rightarrow 0$ a.e. in $\mathbb{R}^{N}$ as $t \rightarrow \infty$ and hence, $\left\langle I_{\mu}^{\prime}(v), \varphi\right\rangle \rightarrow$ $0, \forall \varphi \in C^{\infty}\left(\mathbb{R}^{N}\right)$. Therefore, we have $v \rightarrow u_{\mu}$ as $t \rightarrow \infty$, since $I_{\mu}(v(t))$ is decreasing and converges to the local minimum $I_{\mu}\left(u_{\mu}\right)$.
Now, let $v_{0}=t u$, where $t \in(0,1)$ and $u$ is a positive solution. Then $u \in \mathcal{N}$ and $v_{0} \in H_{1}$. Since $v_{0} \leq u$ and the solution $v$ converges $u_{\mu}$ as $t \rightarrow \infty$, by the order preserving principle, $u_{\mu} \leq u$. This completes the proof.

Remark. We see that minimal solution of $\left(P_{\mu}\right)$ is unique from Proposition 2.3 and Proposition 2.4.

Proposition 2.5. Suppose that $f \in H^{-1}\left(\mathbb{R}^{N}\right), f \geq 0, f \not \equiv 0$ and $\|\mu f\|_{*} \leq C_{N}^{*}$. Then there exist $\tilde{\mu} \geq \bar{\mu}>0$ such that $\left(P_{\mu}\right)$ possesses a positive solution for $0<\mu \leq \tilde{\mu}$ and no positive solution for $\mu>\tilde{\mu}$.

Proof. By Proposition 2.3, $\left(P_{\mu}\right)$ has a positive solution if $\mu \leq C_{N}^{*} /\|f\|_{*}$. Suppose $\left(P_{\mu}\right)$ has a positive solution $\bar{u}$ for some $\mu=\bar{\mu}$. We show that $\left(P_{\mu}\right)$ has a positive solution for any $0<\mu<\bar{\mu}$. For fixed $0<\mu<\bar{\mu}$, using the Lax-Milgram Theorem, we construct a positive sequence $\left\{u_{n}\right\}$ as following;

Let

$$
-\Delta u_{1}+u_{1}=\mu f
$$

and

$$
\begin{equation*}
-\Delta u_{n}+u_{n}=u_{n-1}^{2^{*}-1}+\mu f \text { for } n \geq 2 \tag{2.11}
\end{equation*}
$$

Then, by the maximum principle, we have $0<u_{n}<u_{n+1}<\cdots<\bar{u}$ for $n \geq 1$. And $\left\|u_{1}\right\| \leq \mu\|f\|_{*}$ and $\left\|u_{1}\right\|_{2^{*}} \leq S^{-1 / 2}\left\|u_{1}\right\| \leq S^{-1 / 2} \mu\|f\|_{*}$. Multiplying (2.11) by $u_{n}$, we have $\left\|u_{n}\right\| \leq\left. S^{-2^{*} / 2}\|\bar{u}\|\right|^{2^{*}-1}+\mu\|f\|_{*}$. Therefore, there exists $\tilde{u}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{gathered}
u_{n} \rightarrow \tilde{u} \text { weakly in } H^{1}\left(\mathbb{R}^{N}\right) \text { as } n \rightarrow \infty, \\
u_{n} \rightarrow \tilde{u} \text { a.e. in } \mathbb{R}^{N} \text { as } n \rightarrow \infty, \\
\nabla u_{n} \rightarrow \nabla \tilde{u} \text { a.e. in } \mathbb{R}^{N}, \\
u_{n}^{2^{*}-1} \rightarrow \tilde{u}^{2^{*}-1} \text { weakly in }\left(L^{2^{*}}\left(\mathbb{R}^{N}\right)\right)^{*} \text { as } n \rightarrow \infty .
\end{gathered}
$$

Thus, $\tilde{u}$ is a positive solution of $\left(P_{\mu}\right)$.

Next, let u be a positive solution of $\left(P_{\mu}\right)$. Then, for any $\epsilon>0$, multiplying $\left(P_{\mu}\right)$ by $\omega_{\epsilon}^{2^{*}}$, we have

$$
\begin{equation*}
-\Delta u \omega_{\epsilon}^{2^{*}}+u \omega_{\epsilon}^{2^{*}}=u^{2^{*}-1} \omega_{\epsilon}^{2^{*}}+\mu f(x) \omega_{\epsilon}^{2^{*}} . \tag{2.12}
\end{equation*}
$$

Since $2^{*}>2$, for any $M>0$, there exists a constant $C>0$ such that

$$
u^{2^{*}-1} \geq M u-C \quad \forall u>0
$$

Hence, we have, from (2.12),

$$
\left.-\int \Delta u \omega_{\epsilon}^{2^{*}}+\int u \omega_{\epsilon}^{2^{*}} \geq \int\left((M u-C) \omega_{\epsilon}^{2^{*}}+\mu f(x) \omega_{\epsilon}^{2^{*}}\right)\right) .
$$

By Green's formular, we have

$$
\int \Delta u \omega_{\epsilon}^{2^{*}}=\int u \Delta \omega_{\epsilon}^{2^{*}} .
$$

Thus,

$$
\begin{equation*}
\mu \int f(x) \omega_{\epsilon}^{2^{*}} \leq C \int \omega_{\epsilon}^{2^{*}}+\int\left(1-M-\frac{\Delta \omega_{\epsilon}^{2^{*}}}{w_{\epsilon}^{2^{*}}}\right) \omega_{\epsilon}^{2^{*}} u . \tag{2.13}
\end{equation*}
$$

Since

$$
\begin{aligned}
\frac{\Delta w_{\epsilon}^{2^{*}}}{\omega_{\epsilon}^{2^{*}}}=\frac{\Delta\left(\epsilon+|x|^{2}\right)^{-N}}{\left(\epsilon+|x|^{2}\right)^{-N}} & =2 N(N+1)\left(\epsilon+|x|^{2}\right)^{-2}\left(\frac{N+2}{N+1}|x|^{2}-\frac{N}{N+1} \epsilon\right) \\
& =2 N(N+1)\left(\epsilon+0^{2}\right)^{-2}\left(\frac{N+2}{N+1} 0^{2}-\frac{N}{N+1} \epsilon\right) \\
& =-2 N^{2} \epsilon^{-1},
\end{aligned}
$$

we get, from (2.13),

$$
\mu \int f(x) \omega_{\epsilon}^{2^{*}} \leq C \int \omega_{\epsilon}^{2^{*}}+\left(2 N^{2} \epsilon^{-1}+1-M\right) \int \omega_{\epsilon}^{2^{*}} u
$$

If we choose $M=2 N^{2} \epsilon+1$, then, by (1.1), we have

$$
\mu \leq \frac{C \omega_{\epsilon}^{2^{*}}}{\int f(x) \omega_{\epsilon}^{2^{*}}}=\frac{C S^{N / 2}}{\int f(x) \omega_{\epsilon}^{2^{*}}}
$$

Hence, there exists $\bar{\mu}>0$ such that

$$
\begin{equation*}
\bar{\mu} \leq \tilde{\mu} \doteqdot \inf _{\epsilon>0} \frac{C \int w_{\epsilon}^{2^{*}}}{\int f(x) \omega_{\epsilon}^{2^{*}}}=\inf _{\epsilon>0} \frac{C S^{N / 2}}{\int f(x) \omega_{\epsilon}^{2^{*}}} . \tag{2.14}
\end{equation*}
$$

Therefore, if $\mu>\tilde{\mu}$, then $\left(P_{\mu}\right)$ has no solution and this completes the proof.

## 3. Multiplicity of positive solutions

From now on, we assume that $f \in H^{-1}\left(\mathbb{R}^{N}\right), f \geq 0, f \not \equiv 0$ in $\mathbb{R}^{N}$ and $f$ satisfies $\|\mu f\|_{*} \ll 1$ for $\mu$ small enough.

We set

$$
\mu^{*}:=\sup \left\{\mu \in \mathbb{R}^{+}:\left(P_{\mu}\right) \text { has at least one positive solution in } H^{1}\left(\mathbb{R}^{N}\right)\right\} .
$$

Then, by Proposition 2.5, we have $0<\bar{\mu} \leq \mu^{*}<\infty$.

Remark. The minimal solution $u_{\mu}$ of $\left(P_{\mu}\right)$ is monotonic increasing with respect to $\mu$. Indeed, suppose $\mu^{*}>\nu>\mu$. Since

$$
-\Delta u_{\nu}+u_{\nu}-u_{\nu}^{2^{*}-1}-\mu f(x)=(\nu-\mu) f \geq 0
$$

$u_{\nu}>0$ is a supersolution of $\left(P_{\mu}\right)$. Since $f(x) \geq 0$ and $f(x) \not \equiv 0, u \equiv 0$ is a subsolution of $\left(P_{\mu}\right)$ for any $\mu>0$. By the standard barrier method, we can obtain a solution $u_{\mu}$ of $\left(P_{\mu}\right)$ such that $0 \leq u_{\mu} \leq u_{\nu}$ on $\mathbb{R}^{N}$. We note that 0 is not a solution of $\left(P_{\mu}\right), \nu>\mu$ and $u_{\mu}$ is a minimal solution of $\left(P_{\mu}\right)$ since $u_{\mu}$ can be derived by an iteration scheme with initial value $u_{(0)}=0$. Therefore, by the maximal principle, $0<u_{\mu}<u_{\nu}$ on $\mathbb{R}^{N}$ which completes the proof.

Now, consider the corresponding eigenvalue problem:

$$
\left\{\begin{array}{c}
-\Delta \varphi+\varphi=\lambda(\mu)\left(2^{*}-1\right) u_{\mu}^{2^{*}-2} \varphi,  \tag{3.1}\\
\varphi \text { in } H^{1}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Let $\lambda_{1}$ be the first eigenvalue of (3.1) $)_{\mu}$;i.e.,

$$
\lambda_{1}=\lambda_{1}(\mu):=\inf \left\{\int\left(|\nabla \varphi|^{2}+|\varphi|^{2}\right): \varphi \in H^{1}\left(\mathbb{R}^{N}\right),\left(2^{*}-1\right) \int u_{\mu}^{2^{*}-2} \varphi^{2} d x=1\right\}
$$

Then, $0<\lambda_{1}<\infty$ and we can achieve the minimum by some function $\varphi_{1}=\varphi_{1}(\mu) \in H^{1}\left(\mathbb{R}^{N}\right)$ and $\varphi_{1}>0$ in $\mathbb{R}^{N}$ if $\mu \in\left(0, \mu^{*}\right)(c f .[22])$.

We summarize basic properties for $\lambda_{1}(\mu)$.
Lemma 3.1. (1) For $\mu \in\left(0, \mu^{*}\right), \lambda_{1}(\mu)>1$;
(2) If $0<\mu<\nu \leq \mu^{*}$, then $\lambda_{1}(\nu)<\lambda_{1}(\mu)$;
(3) $\lambda_{1}(\mu) \rightarrow+\infty$ as $\mu \rightarrow 0^{+}$.

Proof. (1) For given $0<\mu<\nu \leq \mu^{*}$, every solution $u_{\nu}$ of $\left(P_{\mu}\right)$ with $\nu \in\left(\mu, \mu^{*}\right)$ is a supersolution of $\left(P_{\mu}\right)$. By Taylor expansion, we have

$$
\begin{aligned}
-\Delta\left(u_{\nu}-u_{\mu}\right)+u\left(u_{\nu}-u_{\mu}\right) & =u_{\nu}^{2^{*}-1}-u_{\mu}^{2^{*}-1}+(\nu-\mu) f \\
& >\left(2^{*}-1\right) u_{\mu}^{2^{*}-2}\left(u_{\nu}-u_{\mu}\right)
\end{aligned}
$$

and moreover, we get

$$
\begin{aligned}
\int \nabla\left(u_{\nu}-u_{\mu}\right) \nabla \varphi_{1}+\int\left(u_{\nu}-u_{\mu}\right) \varphi_{1} & =\int\left(u_{\nu}^{2^{*}-1}-u_{\mu}^{2^{*}-1}\right) \varphi_{1}+\int(\nu-\mu) f \varphi_{1} \\
& >\left(2^{*}-1\right) \int u_{\mu}^{2^{*}-2}\left(u_{\nu}-u_{\mu}\right) \varphi_{1}
\end{aligned}
$$

Therefore, from $(3.1)_{\mu}$, we have

$$
\int \nabla\left(u_{\nu}-u_{\mu}\right) \nabla \varphi_{1}+\int\left(u_{\nu}-u_{\mu}\right) \varphi_{1}=\lambda_{1}(\mu)\left(2^{*}-1\right) \int u_{\mu}^{2^{*}-2}\left(u_{\nu}-u_{\mu}\right) \varphi_{1}
$$

which implies $\lambda_{1}(\mu)>1$.
(2) Since, for $0<\mu<\nu \leq \mu^{*}, u_{\mu}<u_{\nu}$ and

$$
\begin{aligned}
\lambda_{1}(\mu)\left(2^{*}-1\right) \int u_{\mu}^{2^{*}-2} \varphi_{1}(\mu) \varphi_{1}(\nu) & =\int \nabla \varphi_{1}(\mu) \nabla \varphi_{1}(\nu)+\int \varphi_{1}(\mu) \varphi_{1}(\nu) \\
& =\lambda_{1}(\nu)\left(2^{*}-1\right) \int u_{\nu}^{2^{*}-2} \varphi_{1}(\nu) \varphi_{1}(\mu)
\end{aligned}
$$

we have $\lambda_{1}(\mu)>\lambda_{1}(\nu)$.
(3) First, we show that $\left\|u_{\mu}\right\| \rightarrow 0$ as $\mu \rightarrow 0^{+}$. Multiplying $\left(P_{\mu}\right)$ by $u_{\mu}$, we have,

$$
\int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right)=\int u_{\mu}^{2^{*}}+\int \mu f u_{\mu}
$$

and hence, for $\epsilon>0$, we have, by Young's inequality with $\epsilon$,

$$
\left(1-\frac{1}{\lambda_{1}\left(2^{*}-1\right)}-\frac{\epsilon}{2}\right)\left\|u_{\mu}\right\|^{2} \leq \frac{\mu^{2}}{2 \epsilon}\|f\|_{*}^{2} \text { for } \epsilon>0
$$

Thus, for $\epsilon>0$ small, we have $\left\|u_{\mu}\right\| \leq C_{\epsilon} \mu^{2}$ for some constant $C_{\epsilon}>0$, and hence, $\left\|u_{\mu}\right\|=$ $o(1)$ as $\mu \rightarrow 0^{+}$. Next, Multiplying $\left(P_{\mu}\right)$ by $\varphi_{1}(\mu)$, we have, by Hölder's inequality, that

$$
\begin{aligned}
\int\left(\left|\nabla \varphi_{1}\right|^{2}+\left|\varphi_{1}\right|^{2}\right) & =\lambda_{1}\left(2^{*}-1\right) \int u_{\mu}^{2^{*}-2} \varphi_{1}^{2} \\
& \leq \lambda_{1}\left(2^{*}-1\right)\left(\int u_{\mu}^{2^{*}}\right)^{\left(2^{*}-2\right) / 2^{*}}\left(\int \varphi_{1}^{2^{*}}\right)^{2 / 2^{*}} \\
& \leq \lambda_{1}\left(2^{*}-1\right)\left(\int u_{\mu}^{2^{*}}\right)^{\left(2^{*}-2\right) / 2^{*}}\left(\int\left|\nabla \varphi_{1}\right|^{2}\right) \\
& \leq \lambda_{1}\left(2^{*}-1\right) S^{-\left(2^{*}-2\right) / 2}\left\|u_{\mu}\right\|^{2^{*}-2}\left\|\varphi_{1}\right\|^{2}
\end{aligned}
$$

and thus, $S^{\left(2^{*}-2\right) / 2} \leq \lambda_{1} \cdot\left(2^{*}-1\right)\left\|u_{\mu}\right\|^{2^{*}-2}$. Therefore, we have the desired result. This completes the proof.

Lemma 3.2. Let $u_{\mu}$ be a positive solution of $(1.3)_{\mu}$ for which $\lambda_{1}(\mu)>1$. Then, for any $g \in H^{1}\left(\mathbb{R}^{N}\right)$, the problem:

$$
\begin{equation*}
-\Delta w+w=\left(2^{*}-1\right) u_{\mu}^{2^{*}-2} w+g(x), \quad w \in H^{1}\left(\mathbb{R}^{N}\right) \tag{3.2}
\end{equation*}
$$

has a solution.
Proof. Consider the functional defined by

$$
J(w)=\frac{1}{2} \int\left(|\nabla w|^{2}+|w|^{2}\right)-\frac{1}{2}\left(2^{*}-1\right) \int u_{\mu}^{2^{*}-2} w^{2}-\int g w, \quad w \in H^{1}\left(\mathbb{R}^{N}\right)
$$

From Hölder's inequality and Young's inequality, we have, for any $\epsilon>0$,

$$
\begin{aligned}
J(w) & \geq\left(\frac{1}{2}-\frac{1}{2 \lambda_{1}(\mu)}\right)\|w\|^{2}-\frac{\epsilon}{2}\|w\|^{2}-\frac{1}{2 \epsilon}\|g\|_{*}^{2} \\
& =\left(\frac{1}{2}-\frac{1}{2 \lambda_{1}(\mu)}-\frac{\epsilon}{2}\right)\|w\|^{2}-\frac{1}{2 \epsilon}\|g\|_{*}^{2}
\end{aligned}
$$

and hence, for small $\epsilon>0$, there exist $C_{1, \epsilon}>0$ and $C_{2, \epsilon}>0$ such that

$$
\begin{equation*}
J(w) \geq C_{1, \epsilon}\|w\|^{2}-C_{2, \epsilon}\|g\|_{*}^{2} \tag{3.3}
\end{equation*}
$$

Let $\left\{w_{n}\right\} \subset H^{1}\left(\mathbb{R}^{N}\right)$ be the minimizing sequence of variational problem

$$
d=\inf \left\{J(w) \mid w \in H^{1}\left(\mathbb{R}^{N}\right)\right\}
$$

From (3.3), we can also deduce that $\left\{w_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$. So we may suppose that

$$
\begin{gathered}
w_{n} \rightarrow w \text { weakly in } H^{1}\left(\mathbb{R}^{N}\right) \text { as } n \rightarrow \infty \\
\quad w_{n} \rightarrow w \text { a.e. in } \mathbb{R}^{N} \text { as } n \rightarrow \infty
\end{gathered}
$$

Here, we also note that

$$
\nabla w_{n} \rightarrow \nabla w \text { a.e. in } \mathbb{R}^{N} \text { as } n \rightarrow \infty
$$

And

$$
u_{n}^{2^{*}-1} \rightarrow \tilde{u}^{2^{*}-1} \text { weakly in }\left(L^{2^{*}}\left(\mathbb{R}^{N}\right)\right)^{*} \text { as } n \rightarrow \infty .
$$

By Fatou's Lemma

$$
\|w\|^{2} \leq \liminf _{n \rightarrow \infty}\left\|w_{n}\right\|^{2}
$$

The weak convergence and the fact that $\int u_{\mu}^{2^{*}-2} w_{n}^{2}<\infty$ for $n \geq 1$ imply

$$
\lim _{n \rightarrow \infty} \int g w_{n}=\int g w, \lim _{n \rightarrow \infty} \int u_{\mu}^{2^{*}-2} w_{n}=\int u_{\mu}^{2^{*}-2} w
$$

and hence,

$$
J(w) \leq \lim _{n \rightarrow \infty} J\left(w_{n}\right)=d
$$

Then, $J(w)=d$ and $w$ is a minimizer of $J$. Therefore, $w$ is a critical point of $J$ and $w$ is a solution of (3.2). This completes the proof.

Proposition 3.3. For $\mu=\mu^{*}$, the problem $\left(P_{\mu}\right)$ has a positive solution $u_{\mu^{*}}$ and $\lambda_{1}\left(\mu^{*}\right)=1$. Moreover, the solution $u_{\mu^{*}}$ is unique in $H^{1}\left(\mathbb{R}^{N}\right)$.

Proof. For $\mu \in\left(0, \mu^{*}\right)$, multiplying $\left(P_{\mu}\right)$ by $u_{\mu}$, we have, by $(3.1)_{\mu}$,

$$
\begin{aligned}
\int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right) & =\int u_{\mu}^{2^{*}}+\mu \int f u_{\mu} \\
& \leq \frac{1}{\lambda_{1}(\mu)\left(2^{*}-1\right)} \int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right)+\mu^{*}\|f\|_{*}\left\|u_{\mu}\right\| \\
& =\left(\frac{1}{\lambda_{1}(\mu)\left(2^{*}-1\right)}+\frac{\epsilon \mu^{*}}{2}\right)\left\|u_{\mu}\right\|^{2}+\frac{\mu^{*}}{2 \epsilon}\|f\|_{*}^{2} .
\end{aligned}
$$

By taking $\epsilon>0$ small enough, there exists an constant $C_{\epsilon}>0$ such that $\left\|u_{\mu}\right\| \leq C_{\epsilon}$ for all $\mu \in\left(0, \mu^{*}\right)$. Then, there exists $u_{\mu^{*}}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ such that $u_{\mu}$ monotonically increasing to $u_{\mu^{*}}$ as $\mu \rightarrow \mu^{*}$ and $u_{\mu} \rightarrow u_{\mu^{*}}$ weakly in $H^{1}\left(\mathbb{R}^{N}\right)$ as $\mu \rightarrow \mu^{*}$. Hence, $u_{\mu^{*}}$ is a positive solution of $\left(P_{\mu}\right)$ with $\mu=\mu^{*}$. We note that $\lambda_{1}(\mu)$ is a continuous function of $\mu \in\left(0, \mu^{*}\right]$.

Define $F: \mathbb{R}^{1} \times H^{1}\left(\mathbb{R}^{N}\right) \rightarrow H^{-1}\left(\mathbb{R}^{N}\right)$ by

$$
F(\mu, u)=\Delta u-u+\left(u^{+}\right)^{2^{*}-1}+\mu f(x) .
$$

Since $u_{\mu} \rightarrow u_{\mu *}$ weakly as $\mu \rightarrow \mu^{*}$, from Lemma 3.1, $\lambda\left(\mu^{*}\right) \geq 1$. If $\lambda_{1}\left(\mu^{*}\right)>1$, then $F_{u}\left(\mu^{*}, u_{\mu^{*}}\right) \varphi=\Delta \varphi-\varphi+\left(2^{*}-1\right) u_{\mu^{*}}^{2^{*}-2} \varphi=0$ has no nontrivial solution. From Lemma 3.2, $F\left(\mu^{*}, u_{\mu^{*}}\right)$ is an isomorphism of $\mathbb{R}^{1} \times H^{1}\left(\mathbb{R}^{N}\right)$ onto $H^{-1}\left(\mathbb{R}^{N}\right)$, and by the implicitly function theorem to $F$, we find a neighborhood $\left(\mu^{*}-\delta, \mu^{*}+\delta\right)$ of $u^{*}$ such that $\left(P_{\mu}\right)$ possesses a positive solution if $\mu \in\left(\mu^{*}-\delta, \mu^{*}+\delta\right)$, which contradicts the definition of $\mu^{*}$. Therefore, $\lambda_{1}\left(\mu^{*}\right)=1$.

Suppose $U_{\mu^{*}}$ is a positive solution of $\left(P_{\mu^{*}}\right)$. Then $U_{\mu^{*}} \geq u_{\mu^{*}}$ since $u_{\mu^{*}}$ is minimal. Let $w=U_{\mu^{*}}-u_{\mu^{*}}$. Then, since $\lambda_{1}\left(\mu^{*}\right)=1$, we have

$$
-\Delta w-w \geq\left(2^{*}-1\right) u_{\mu^{*}}^{2^{*}-2} w .
$$

Let $\varphi_{1}=\varphi_{1}\left(\mu^{*}\right)$ be the eigenfunction of the problem $(3,1)_{\mu^{*}}$. Then,

$$
\left(2^{*}-1\right) \int u_{\mu^{*}}^{2^{*}-2} \varphi_{1} w=\int \nabla w \nabla \varphi_{1}+\int w \varphi_{1} \geq\left(2^{*}-1\right) \int u_{\mu^{*}}^{2^{*}-1} w \varphi_{1}
$$

and hence, $w \equiv 0$. This completes the proof.

Proposition 3.4. The minimal solution $u_{\mu}$ of $\left(P_{\mu}\right)$ increasing continuously to $u_{\mu^{*}}$ as $\mu \rightarrow \mu^{*}$ and uniformly bounded in $H^{1}\left(\mathbb{R}^{N}\right)$ for all $\mu \in\left(0, \mu^{*}\right]$. Moreover, $\left\|u_{\mu}\right\| \leq O\left(\mu^{2}\right)$ as $\mu \rightarrow 0^{+}$.

Proof. It suffices to find the uniform bound of $u_{\mu}$. Multiplying $\left(P_{\mu}\right)$ by $u_{\mu}$, we have

$$
\int\left(\left|\nabla u_{\mu}\right|^{2}+\left|u_{\mu}\right|^{2}\right)=\int u_{\mu}^{2^{*}}+\int \mu f u_{\mu}
$$

and hence, for $\epsilon>0$, we have

$$
\left(1-\frac{1}{\lambda_{1}\left(2^{*}-1\right)}-\frac{\epsilon}{2}\right)\left\|u_{\mu}\right\|^{2} \leq \frac{\mu^{2}}{2 \epsilon}\|f\|_{*}^{2} \text { for } \epsilon>0 .
$$

Therefore, for $\epsilon>0$ small, we have $\left\|u_{\mu}\right\| \leq C_{\epsilon} \mu^{2}$ for some constant $C_{\epsilon}>0$. Next, fix $\tau \in\left(0, \mu^{*}\right]$. If $\mu$ increasing to $\tau$, then, by the first Remark in section 3, $u_{\mu}$ converges monotonically increasing way up to $u_{\tau}$ in $H^{1}\left(\mathbb{R}^{N}\right)$. If it is not the case, then, by multiplying $u_{\mu}$ on $\left(P_{\mu}\right)$ again, we have

$$
\left\|u_{\mu}\right\|^{2} \leq\left\langle u_{\tau}^{2^{*}-1} u_{\mu}\right\rangle+\tau\left\langle f, u_{\mu}\right\rangle
$$

and so

$$
\left\|u_{\mu}\right\| \leq C S^{-\left(2^{*}-1\right) / 2}\left\|u_{\tau}\right\|^{2^{*}-1}+\tau\|f\|_{*}
$$

for some $C>0$. Hence, there exists a sequence $\left\{u_{\mu_{j}}\right\}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ conversing weakly to a solution $\tilde{u}$ of $\left(P_{\tau}\right)$. Then, by the maximum principle, $u_{\mu_{j}} \leq \tilde{u}<u_{\tau}$ which leads a contradiction to the minimality of $u_{\tau}$. This completes the proof.

Next, we are going to find the second solution. In order to get another positive solution of $\left(P_{\mu}\right)$, we consider the following problem:

$$
\left\{\begin{align*}
-\Delta v+v & =\left(v+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1} \text { in } \mathbb{R}^{N}, \\
v & \in H^{1}\left(\mathbb{R}^{N}\right), v>0 \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

and the corresponding variational functional:

$$
J_{\mu}(v)=\frac{1}{2} \int|\nabla v|^{2}+\frac{1}{2} \int|v|^{2}-\frac{1}{2^{*}} \int\left[\left(v^{+}+u_{\mu}\right)^{2^{*}}-u_{\mu}^{2^{*}}-2^{*} u_{\mu}^{2^{*}-1} v^{+}\right]
$$

for $v \in H^{1}\left(\mathbb{R}^{N}\right)$.
Clearly, we can have another positive solution $U_{\mu}=u_{\mu}+v_{\mu}$ if we show the problem $(Q)_{\mu}$ possesses a positive solution $v_{\mu}$. We look for a critical point of $J_{\mu}$ which is a weak solution of $\left(Q_{\mu}\right)$ by employing standard argument of the Mountain Pass method without the (PS) condition.

We set

$$
\begin{equation*}
\psi_{\epsilon}(x)=\varphi(x) w_{\epsilon}(x) \tag{3.5}
\end{equation*}
$$

where $\varphi(x) \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is a cut off function and $w_{\epsilon}$ as in (1.1). Because $u_{\mu}$ is the critical point of $I_{\mu}(u)$, we can prove that

$$
\begin{equation*}
J_{\mu}(v)=K_{\mu}(v)-K_{\mu}(0)=I_{\mu}(v)-I_{\mu}\left(u_{\mu}\right) \tag{3.6}
\end{equation*}
$$

where, for $v \in H^{1}\left(\mathbb{R}^{N}\right)$,

$$
K_{\mu}(v)=\frac{1}{2} \int\left(\left|\nabla\left(v+u_{\mu}\right)\right|^{2}+\left(v+u_{\mu}\right)^{2}-\frac{1}{2} \int\left(v^{+}+u_{\mu}\right)-\mu \int f(x)\left(v+u_{\mu}\right) .\right.
$$

By using the following estimations in [4], we know

$$
\begin{gather*}
\left\|\nabla \psi_{\epsilon}\right\|_{2}^{2}=S^{N / 2}+O\left(\epsilon^{(N-2) / 2}\right),  \tag{3.7}\\
\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}=S^{N / 2}+O\left(\epsilon^{N^{2} /(2 N-2)}\right),  \tag{3.8}\\
\left\|\psi_{\epsilon}\right\|_{2}^{2}=\left\{\begin{array}{lr}
C_{1} \epsilon+O\left(\epsilon^{(N-2) / 2}\right), & \text { for } \quad N \geq 5, \\
C_{1} \epsilon|\ln \epsilon|+O\left(\epsilon^{(N-2) / 2}\right), & \text { for } \quad N=4, \\
O\left(\epsilon^{1 / 2}\right), & \text { for } \quad N=3,
\end{array}\right. \tag{3.9}
\end{gather*}
$$

where $C_{1}$ is a positive constant independent of $\epsilon$.
Lemma 3.5. Let $v \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}, v \geq 0$.
(1) For sufficiently small $\epsilon>0$, there exist $\rho>0, \alpha>0$ such that

$$
\left.J_{\mu}(v)\right|_{\partial B_{\rho}} \geq \alpha>0, \text { and }
$$

(2) For $t>0$,

$$
J_{\mu}(t v) \rightarrow-\infty \text { as } t \rightarrow \infty
$$

Proof. (1) Let $v \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}, v \geq 0$ Then, for $\epsilon>0$, by Young's inequality,

$$
\begin{aligned}
J_{\mu}(v)= & \frac{1}{2} \int\left(|\nabla v|^{2}+|v|^{2}\right)-\iint_{0}^{v^{+}}\left[\left(u_{\mu}+s\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1}\right] \\
\geq & \frac{1}{2}\left(1-\frac{1}{\lambda_{1}}\right) \int\left(|\nabla v|^{2}+|v|^{2}\right)- \\
& -\iint_{0}^{v^{+}}\left[\left(u_{\mu}+s\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1}-\left(2^{*}-1\right) u_{\mu}^{2^{*}-2} s\right] \\
\geq & \frac{1}{2}\left(1-\frac{1}{\lambda_{1}}\right) \int\left(|\nabla v|^{2}+|v|^{2}\right)-\iint_{0}^{v^{+}}\left[\epsilon u_{\mu}^{2^{*}-2} s+C_{\epsilon} s^{2^{*}-1}\right] \\
\geq & \frac{1}{2}\left(1-\frac{1}{\lambda_{1}}\right)\|v\|^{2}-\frac{\epsilon}{2} \int u_{\mu}^{2^{*}-2}\left(v^{+}\right)^{2}-\frac{C_{\epsilon}}{2^{*}+1} \int\left(v^{+}\right)^{2^{*}} \\
\geq & \frac{1}{2}\left(1-\frac{1}{\lambda_{1}}-\frac{\epsilon}{2\left(2^{*}-1\right) \lambda_{1}}\right)\|v\|^{2}-\frac{C_{\epsilon}}{2^{*}} S^{-2^{*} / 2}\|v\|^{2^{*}}
\end{aligned}
$$

for some constant $C_{\epsilon}>0$. Hence, for sufficiently small $\epsilon>0$, there exist $\rho>0, \alpha>0$ such that

$$
\left.J_{\mu}(v)\right|_{\partial B_{\rho}} \geq \alpha>0,
$$

where $B_{\rho}=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right):\|u\|<\rho\right\}$.
(2) Let $v \in H^{1}\left(\mathbb{R}^{N}\right), v \geq 0$ and $v \not \equiv 0$, then, for $t>0$, we have

$$
\begin{aligned}
J_{\mu}(t v) & =\frac{t^{2}}{2} \int\left(|\nabla v|^{2}+|v|^{2}\right)-\frac{1}{2^{*}} \int\left(\left(u_{\mu}+t v\right)^{2^{*}}-u_{\mu}^{2^{*}}-2^{*} u_{\mu}^{2^{*}-1} t v\right) \\
& \leq \frac{t^{2}}{2} \int\left(|\nabla v|^{2}+|v|^{2}\right)-\frac{t^{2^{*}}}{2^{*}} \int|v|^{2^{*}} \\
& \leq \frac{t^{2}}{2}\|v\|^{2}-\frac{t^{2^{*}}}{2^{*}}\|v\|_{2^{*}}^{2^{*}} .
\end{aligned}
$$

Therefore, we deduce

$$
J_{\mu}(t v) \rightarrow-\infty
$$

as $t \rightarrow \infty$. This completes the proof.

Lemma 3.6. $\quad$ Suppose $3 \leq N \leq 6$. Then there exists some constant $t_{\epsilon}>0,0<k_{1} \leq$ $t_{\epsilon} \leq k_{2}<+\infty$ such that $\sup _{t \geq 0} J_{\mu}\left(t \psi_{\epsilon}\right)=J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right)$ and

$$
J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right) \leq \frac{1}{N} S^{N / 2}-m k_{1}^{2^{*}-1} \int_{B_{2 \eta}} \psi_{\epsilon}^{2^{*}-1}+ \begin{cases}O(\epsilon), & \text { for } N \geq 5 \\ O(\epsilon|\ln \epsilon|), & \text { for } N=4 \\ O\left(\epsilon^{1 / 2}\right), & \text { for } N=3\end{cases}
$$

where $\mu \in\left(0, \mu^{*}\right)$ and $m=\inf \left\{u_{\mu}(x) \mid x \in B_{2 \eta}\right\}>0$. Moreover,

$$
J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right)<\frac{1}{N} S^{N / 2}
$$

Proof. By Lemma 3.5 and the fact $3 \leq N \leq 6$, we can easely show that there exist $t_{\epsilon}>0$ such that $J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right)=\sup _{t>0} J_{\mu}\left(t \psi_{\epsilon}\right)$, we claim that there exist some constants $k_{1}>0, k_{2}>0$ such that $0<k_{1} \leq t_{\epsilon} \leq k_{2}<+\infty$. In fact, since

$$
\begin{gathered}
J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right)=\sup _{t \geq 0} J_{\mu}\left(t \psi_{\epsilon}\right), \\
\left.\frac{d J_{\mu}\left(t \psi_{\epsilon}\right)}{d t}\right|_{t=t_{\epsilon}}=0, t_{\epsilon}>0 \text { and } \\
\left.\int\left|\nabla \psi_{\epsilon}\right|^{2}+\left|\psi_{\epsilon}\right|^{2}=\int\left[\left[\left(t_{\epsilon} \psi_{\epsilon}+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2 *-1}\right)\right] / t_{\epsilon}\right] \psi_{\epsilon} .
\end{gathered}
$$

Therefore, we have

$$
\begin{gather*}
\frac{\left\|\nabla \psi_{\epsilon}\right\|_{2}^{2}+\left\|\psi_{\epsilon}\right\|_{2}^{2}}{\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}}-t_{\epsilon}^{2^{*}-2}=\frac{\int\left[\left[\left(t_{\epsilon} \psi_{\epsilon}+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1}-\left(t_{\epsilon} \psi_{\epsilon}\right)^{2^{*}-1} / t_{\epsilon}\right] \psi_{\epsilon}\right]}{\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}}  \tag{3.10}\\
\geq 0
\end{gather*}
$$

From (3.7) - (3.9), we have

$$
t_{\epsilon}^{2^{*}-2} \leq \frac{\left\|\nabla \psi_{\epsilon}\right\|_{2}^{2}+\left\|\psi_{\epsilon}\right\|_{2}}{\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}} \leq c_{2}<+\infty
$$

for $\epsilon$ small enough, and thus $t_{\epsilon} \leq k_{2}$ for some $k_{2}>0$.
On the other hand, it is easy to check that

$$
\lim _{u \rightarrow \infty} \frac{\left(u+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1}-u^{2^{*}-1}}{u^{2^{*}-1}}=0 .
$$

Put $u=t_{\epsilon} \psi_{\epsilon}$. Then for any $\delta>0$, there exists a constant $C_{\delta}>0$ such that

$$
\begin{aligned}
& \int \frac{\left(t_{\epsilon} \psi_{\epsilon}+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2 *-1}-\left(t_{\epsilon} \psi_{\epsilon}\right)^{2^{*}-1}}{\left\|t_{\epsilon} \psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}} \\
& =\left[\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}\right]^{-1} \int \frac{\left[\left(t_{\epsilon} \psi_{\epsilon}+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1}-\left(t_{\epsilon} \psi_{\epsilon}\right)^{2^{*}-1}\right] \psi_{\epsilon}}{t_{\epsilon}} \\
& =\left[\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}\right]^{-1} \int \frac{\left(\delta t_{\epsilon}^{2^{*}-1} \psi_{\epsilon}^{2^{*}-1}+t_{\epsilon} C_{\delta} \psi_{\epsilon}\right) \psi_{\epsilon}}{t_{\epsilon}} \\
& \leq\left[\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}\right]^{-1}\left[\delta t_{\epsilon}^{2^{*}-2}\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}+C_{\delta}\left\|\psi_{\epsilon}\right\|_{2}^{2}\right] \\
& =\delta t_{\epsilon}^{2^{*}-2}+O\left(\epsilon^{1 / 2}\right) .
\end{aligned}
$$

Again, by (3.7) - (3.10),

$$
\begin{aligned}
1-t_{\epsilon}^{2^{*}-2} & \left.\left.\leq\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}} \int\left[\left(t_{\epsilon} \psi_{\epsilon}\right)+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1}-\left(t_{\epsilon} \psi_{\epsilon}\right)^{2^{*}-1}\right] / t_{\epsilon}\right] \psi_{\epsilon} \\
& \leq \delta t_{\epsilon}^{2^{*}-2}+O\left(\epsilon^{1 / 2}\right),
\end{aligned}
$$

and thus, we have

$$
1-t_{\epsilon}^{2^{*}-2}-\delta t_{\epsilon}^{2^{*}-2}+O\left(\epsilon^{1 / 2}\right) \leq 0
$$

Choosing $\delta, \epsilon$ small enough, we find a constant $k_{1}>0$ such that $t_{\epsilon} \geq k_{1}$. Moreover, from the definition of $J_{\mu}$ and the inequality:

$$
\left(v+u_{\mu}\right)^{p}-u_{\mu}^{p}-v^{p} \geq p u_{\mu} v^{p-1} \text { for every } v \geq 0, p>2,
$$

we have

$$
\begin{aligned}
J_{\mu}(v) & =\frac{1}{2} \int\left(|\nabla v|^{2}+v^{2}\right)-\frac{1}{2} \int\left(\left(v^{+}+u_{\mu}\right)^{2^{*}}-u_{\mu}^{2^{*}}-2^{*} u_{\mu}^{2^{*}-1} v\right) \\
& \leq \frac{1}{2} \int\left(|\nabla v|^{2}+v^{2}\right)-\frac{1}{2^{*}} \int v^{2^{*}}-2^{*} u_{\mu} v^{2^{*}-1}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right) & =\frac{t_{\epsilon}^{2}}{2} \int\left(\left|\nabla \psi_{\epsilon}\right|^{2}+\left|\psi_{\epsilon}\right|^{2}\right)-\frac{1}{2^{*}} \int\left(t_{\epsilon} \psi_{\epsilon}\right)^{2^{*}}+2^{*} u_{\mu}\left(t \psi_{\epsilon}\right)^{2^{*}-2} \\
& =\frac{t_{\epsilon}^{2}}{2}\left(\left\|\nabla \psi_{\epsilon}\right\|_{2}^{2}+\left\|\psi_{\epsilon}\right\|_{2}^{2}\right)-\frac{t_{\epsilon}^{2^{*}}}{2^{*}}\left\|\psi_{\epsilon}\right\|_{2^{*}}^{2^{*}}-2^{*} t^{2^{*}-2} \int u_{\mu} \psi_{\epsilon}^{2^{*}-2} \\
& \leq\left(\frac{t_{\epsilon}^{2}}{2}-\frac{t_{\epsilon}^{2^{*}}}{2^{*}}\right)\left\|\nabla \psi_{\epsilon}\right\|_{2}^{2}+\frac{t_{\epsilon}^{2}}{2}\left\|\psi_{\epsilon}\right\|_{2}^{2}-2^{*} t^{2^{*}-2} \int_{B_{2 \eta}} u_{\mu} \psi_{\epsilon}^{2^{*}-2} .
\end{aligned}
$$

From (3.7) - (3.9), we have

$$
\begin{aligned}
& J_{\mu}\left(t \psi_{\epsilon}\right) \leq \frac{1}{N} S^{N / 2}+O\left(\epsilon^{(N-2) / 2}\right)+ \begin{cases}K_{1} \epsilon+O\left(\epsilon^{(N-2) / 2}\right) & \text { for } N \geq 5, \\
K_{1} \epsilon|\ln \epsilon|+O\left(\epsilon^{(N-2) / 2}\right) & \text { for } N=4, \\
O\left(\epsilon^{1 / 2}\right) & \text { for } N=3,\end{cases} \\
&-\quad-2^{*} t^{2^{*}-1} \int_{B_{2 \eta}} u_{\mu} \psi_{\epsilon}^{2^{*}-1}
\end{aligned} \quad \begin{aligned}
& \leq \frac{1}{N} S^{N / 2}-2^{*} t^{2^{*}-1} \int_{B_{2 \eta} u_{\mu} \psi_{\epsilon}^{2^{*}-1}} \\
& \quad+ \begin{cases}O(\epsilon), & \text { for } N \geq 5, \\
O(\epsilon|\ln \epsilon|), & \text { for } N=4, \\
O\left(\epsilon^{1 / 2}\right), & \text { for } N=3 .\end{cases}
\end{aligned}
$$

And, we have: for $N=5$,

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1} \int_{B_{2 \eta}} \psi_{\epsilon}^{2^{*}-1} \\
& \geq \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1} \int_{B_{\eta}} \psi_{\epsilon}^{2^{*}-1} \\
& =\lim _{\epsilon \rightarrow 0^{+}}(N(N-2))^{(N+2) / 4} \alpha(N) \epsilon^{-1} \int_{0}^{\eta \epsilon^{-1 / 2}}\left(\frac{\epsilon^{-(N-2) / 4}}{\left(1+z^{2}\right)^{(N-2) / 2}}\right)^{2^{*-1}} \epsilon^{N / 2} \xi^{N-1} d z \\
& =\lim _{\epsilon \rightarrow 0^{+}} \epsilon^{(N-6) / 4} \int_{0}^{\eta \epsilon^{-1 / 2}} \alpha(N)\left(\frac{1}{1+z^{2}}\right)^{(N+2) / 2} \xi^{N-1} d z \rightarrow \infty,
\end{aligned}
$$

where $\xi=r \epsilon^{-1 / 2}, r=|x|$ and $\alpha(N)$ denote the area of unit sphere, and for $N=4$,

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1}\left|\ln ^{\epsilon}\right|^{-1} \int_{B_{2 \eta}} \psi_{\epsilon}^{2^{*}-1} \\
& \geq \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1}\left|\ln ^{\epsilon}\right|^{-1} \int_{B_{\eta}} \psi_{\epsilon}^{2^{*}-1} \\
& =\lim _{\epsilon \rightarrow 0^{+}}(N(N-2))^{(N+2) / 4} \rho(N) \epsilon^{-1}\left|\ln ^{\epsilon}\right|^{-1} \int_{0}^{\eta\left|\ln ^{\epsilon}\right|}\left(\frac{\epsilon^{-(N-2) / 4}}{\left(1+z^{2}\right)^{(N-2) / 2}}\right)^{2^{*}-1} \epsilon^{N / 2} \xi^{N-1} d z \\
& =\lim _{\epsilon \rightarrow 0^{+}} \epsilon^{(N-6) / 4}\left|\ln ^{\epsilon}\right|^{N} \int_{0}^{\eta\left|\ln ^{\epsilon}\right|} \rho(N)\left(\frac{1}{1+z^{2}}\right)^{(N+2) / 2} r^{N-1} d z \rightarrow \infty,
\end{aligned}
$$

where $\xi=r\left|\ln ^{\epsilon}\right|, r=|x|$ and $\rho(N)$ denote the area of unit sphere, and for $N=3$,

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1} \epsilon^{1 / 2} \int_{B_{2 \eta}} \psi_{\epsilon}^{2^{*}-1} \\
& \geq \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1 / 2} \int_{B_{\eta}} \psi_{\epsilon}^{2^{*}-1} \\
& =\lim _{\epsilon \rightarrow 0^{+}}(N(N-2))^{(N+2) / 4} \alpha(N) \epsilon^{-1 / 2} \int_{0}^{\eta \epsilon^{-1 / 2}}\left(\frac{\epsilon^{-(N-2) / 4}}{\left(1+z^{2}\right)^{(N-2) / 2}}\right)^{2^{*}-1} \epsilon^{N / 2} \xi^{N-1} d z \\
& =\lim _{\epsilon \rightarrow 0^{+}} \epsilon^{(N-4) / 4} \int_{0}^{\eta \epsilon^{-1 / 2}} \alpha(N)\left(\frac{1}{1+z^{2}}\right)^{(N+2) / 2} \xi^{N-1} d z \rightarrow \infty,
\end{aligned}
$$

where $\xi=r \epsilon^{-1 / 2}, r=|x|$ and $\alpha(N)$ denote the area of unit sphere. Consequently, we deduce

$$
J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right)<\frac{1}{N} S^{N / 2}
$$

This completes the proof.

Theorem 3.7. Suppose $3 \leq N \leq 5$. Then the problem $\left(P_{\mu}\right)$ possesses at least two positive solutions for all $\mu \in\left(0, \mu^{*}\right)$.

Proof. Let

$$
\Gamma=\left\{\gamma \in \mathcal{C}\left([0,1], H^{1}\right) ; \gamma(0)=0, \gamma(1)=t_{\epsilon} \psi_{\epsilon}\right\}
$$

and

$$
c_{\mu}=\inf _{\gamma \in \Gamma} \max _{s \in[0,1]} J_{\mu}(\gamma(s)) .
$$

Then, we have, from Lemma 3.6,

$$
\begin{equation*}
0<\alpha \leq c_{\mu} \leq \sup _{t \geq 0} J_{\mu}\left(t_{\epsilon} \psi_{\epsilon}\right)<\frac{1}{N} S^{N / 2} \tag{3.11}
\end{equation*}
$$

We now applying the Mountain Pass Theorem without Palais-Smale condition in [4] to get a subsequence $\left\{v_{n}\right\} \subset H^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
J_{\mu}\left(v_{n}\right) \rightarrow c_{\mu}, \quad J_{\mu}^{\prime}\left(v_{n}\right) \rightarrow 0 \quad \text { in } \quad H^{-1}\left(\mathbb{R}^{N}\right) \tag{3.12}
\end{equation*}
$$

Since

$$
\begin{aligned}
1+c_{\mu}+\left\|v_{n}\right\|+\left\|u_{\mu}\right\| & \geq 1+c_{\mu}+\left\|v_{n}+u_{\mu}\right\| \\
& \geq J_{\mu}\left(v_{n}\right)-\frac{1}{2^{*}} J_{\mu}^{\prime}\left(v_{n}\right)\left(v_{n}^{+}+u_{\mu}\right) \\
& \geq\left(\frac{1}{2}-\frac{1}{2^{*}}\right)\left\|v_{n}\right\|^{2}-\frac{2}{2^{*}}\left\|v_{n}\right\|\left\|u_{\mu}\right\|-\left(1-\frac{1}{2^{*}}\right)\left\|u_{\mu}\right\|_{2^{*}}^{2^{*}}
\end{aligned}
$$

we see that $\left\{v_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$. Hence, there exists a subsequence $\left\{v_{n}\right\}$ such that

$$
\begin{gathered}
v_{n} \rightarrow v_{\mu} \text { weakly in } H^{1}\left(\mathbb{R}^{N}\right), \\
v_{n} \rightarrow v_{\mu} \text { a.e. in } \mathbb{R}^{N}, \\
\nabla v_{n} \rightarrow \nabla v_{\mu} \text { a.e. in } \mathbb{R}^{N},
\end{gathered}
$$

and

$$
\left(v_{n}+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1} \rightarrow\left(v^{+}+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1} \text { weakly in }\left(L^{2^{*}}\left(\mathbb{R}^{N}\right)\right)^{*}
$$

Then $v_{\mu}$ is a weak solution of $-\Delta v+v=\left(v^{+}+u_{\mu}\right)^{2^{*}-1}-u_{\mu}^{2^{*}-1}$.
Using the maximal principle, we get $v_{\mu} \geq 0$ in $\mathbb{R}^{N}$. Set $u_{n}=v_{n}+u_{\mu}, u=v_{\mu}+u_{\mu}$. Then

$$
\begin{aligned}
& u_{n} \rightarrow u \text { weakly in } H^{1}\left(\mathbb{R}^{N}\right), \\
& u_{n} \rightarrow u \text { a.e. in } \mathbb{R}^{N}, \\
& \nabla u_{n} \rightarrow \nabla u \text { a.e. in } \mathbb{R}^{N} .
\end{aligned}
$$

From (3.6),

$$
\begin{equation*}
J_{\mu}\left(v_{n}\right)=K_{\mu}\left(v_{n}\right)-K_{\mu}(0)=I_{\mu}\left(v_{n}\right)-I_{\mu}\left(u_{\mu}\right) \rightarrow c_{\mu} \text { as } n \rightarrow \infty \tag{3.13}
\end{equation*}
$$

and $u$ is a solution of

$$
\begin{equation*}
-\Delta u+u=u^{2^{*}}+\mu f(x) \tag{3.14}
\end{equation*}
$$

Now, we are going to show that $u \not \equiv u_{\mu}$. In fact, if $u \equiv u_{\mu}$, i.e., $v_{\mu} \equiv 0$, then $u_{n} \nrightarrow u$ strongly in $H^{1}\left(\mathbb{R}^{N}\right)$, since $J_{\mu}(0)=0<u_{\mu}$. Let $c_{1}=c_{\mu}+I_{\mu}\left(u_{\mu}\right)$. By the Brezis-Lieb Lemma (cf. [3]) we have

$$
\left\{\begin{array}{r}
\left\|u_{n}\right\|^{2}=\left\|u_{\mu}\right\|^{2}+\left\|v_{n}\right\|^{2}+o(1)  \tag{3.15}\\
\left|u_{\mu}^{+}\right|^{2^{*}}=\left|u_{\mu}\right|^{2^{*}}+\left|v_{\mu}^{+}\right|^{2^{*}}+o(1) \\
\int f u_{n}=\int f u_{n}+o(1) \text { as } n \rightarrow \infty
\end{array}\right.
$$

By (3.13), (3.14), we have

$$
\begin{gathered}
\int\left|\nabla u_{\mu}\right|^{2}+u_{\mu}^{2}=\int\left(u_{\mu}^{+}\right)^{2^{*}}+\mu \int f(x) u_{\mu}+o(1) \\
\int\left|\nabla u_{\mu}\right|^{2}+u_{\mu}^{2}=\int\left(u_{\mu}^{+}\right)^{2^{*}}+\mu \int f(x) u_{\mu}
\end{gathered}
$$

Hence,

$$
\int\left|\nabla v_{n}\right|^{2}+v_{n}^{2}=\int\left(v_{n}^{+}\right)^{2^{*}}+o(1)
$$

by substracting the two identities above and by (3.15).
Using (3.13), (3.14), (3.15) and (3.16), we have that, as $n \rightarrow \infty$

$$
\begin{aligned}
c_{1} & =c_{\mu}+I_{\mu}\left(u_{\mu}\right) \\
& =J_{\mu}\left(v_{n}\right)+I_{\mu}\left(u_{\mu}\right)+o(1) \\
& =I_{\mu}\left(u_{n}\right)+o(1) \\
& =I_{\mu}\left(u_{\mu}\right)+\frac{1}{2} \int\left|\nabla v_{\mu}\right|^{2}+v_{\mu}^{2}-\frac{1}{2^{*}} \int v_{n}^{2^{*}}+o(1) \\
& =I_{\mu}\left(u_{\mu}\right)+\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int\left(v_{n}\right)^{2}+o(1) \\
& =I_{\mu}\left(u_{\mu}\right)+\frac{1}{N} \int\left(v_{n}\right)^{2^{*}}+o(1) .
\end{aligned}
$$

By Sobolev inequality ( $c f .[4],[7],[6])$ :

$$
S\left\|v_{n}\right\|_{2^{*}}^{2} \leq\left\|v_{n}\right\|^{2}=\left\|v_{n}\right\|_{2^{*}}^{2^{*}}+o(1)
$$

we have $\left\|w_{n}\right\|_{2^{*}}^{2^{*}} \geq S^{N / 2}$. Thus,

$$
c_{1}=c_{\mu}+I_{\mu}\left(u_{\mu}\right) \geq I_{\mu}\left(u_{\mu}\right)+\frac{1}{N} S^{N / 2}(c f .)
$$

This leads a contradiction to (3.11). Therefore, we have $v_{\mu}>0$. This completes the proof. $\quad$ Consequently, we have

Theorem 3.8. Suppose $3 \leq N \leq 5$. Assume $f \in H^{-1}\left(\mathbb{R}^{N}\right), f \geq 0, f \not \equiv 0$ in $\mathbb{R}^{N}$ and $\|\mu f\|_{*} \leq C_{N}^{*}$. Then there exists a positive constant $\mu^{*}>0$ such that $\left(P_{\mu}\right)$ possesses at least two positive solutions for $0<\mu<\mu^{*}$, a unique solution for $\mu=\mu^{*}$ and no positive solution if $\mu>\mu^{*}$.

## References

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funt. Anal., 14 (1973), 349-381.
[2] S. Bae, Positive global solutions of inhomogenuous semilinear elliptic equations with critical sobolev exponent, Preprint.
[3] H. Brezis and E. Lieb, A relation between pointwise convergence of functionals and convergence of functions,, Proc. Amer. Soc., 88 (1983), 486-490.
[4] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437-427.
[5] D.-M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equations on $\mathbb{R}^{N}$, Nonlinear Anal. T.M.A., 15(1990), 1048-1052.
[6] Y. Deng and Li. Y, Existence and bifurcation of positive solutions for a semilinear elliptic equation with critical exponent, J. Diff. Equa., 130 (1996), 179-200.
[7] Y. Deng and Li. Y, Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2(1997), 361-382.
[8] W.-Y. Ding and W.-M. Ni On the existence of positive solutions for a semilinear elliptic equation, Archs Ration Mech. Analysis, 91(1986), 283-307.
[9] L. Ekeland, Convex minimization problem, Bull. Amer. Math. Soc., (NS)1 (1976), 443-474.
[10] L. Caffarely, G. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math 42(1986), 271-1191.
[11] N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equations, Nonlinear Analysis. T.M.A., 29(8) (1997), 889-901.
[12] N. Hirano, Multiple existence of solutions for a nonhomogeneous elliptic problems on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 336 (2007), 506-522.
[13] N. Hirano and W. S. Kim, Multiple existence of solutions for a nonhomogeneous elliptic problem with critical exponent on $\mathbb{R}^{N}$, J. Diff. Equa,249,(2010), 1799-1816.
[14] N. Hirano and W. S. Kim, Multiple existence of solutions for a nonhomogeneous elliptic problem on $\mathbb{R}^{N}$, Nonlinear Analysis. T.M.A., 74,(2011), 4369-4378.
[15] M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^{p}=0$ in $R^{N}$, Arch. Retional Mech. Anal. 105(3), (1989), 243-266.
[16] P.L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. part 1, Ann. Inst. H. Poincaré Analyse non Linéaire, 1(2)(1984), 109-145,.
[17] P.L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. part 2, Ann. Inst. H. Poincaré Analyse non Linéaire, 1(4)(1984), 223-283,.
[18] W.A. Strauss, Existence of solatary waves in higher dimensions, Communs. Math. Phys., 55(1977), 149-162.
[19] M. Willem, Minimax theorems, Birkhauser. Boston, Basel, Berlin. (1996).
[20] X.-P. Zhu, Multiple entire solutions of a semilinear elliptic equation, Nonlinear analysis T.M.A., 12(11) (1988), 1297-1316.
[21] X.-P. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Diff. Equa, 92 (1991) 163-178.
[22] X.-P. Zhu, and H.-S. Zhu, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domain , Proc. Roy. Soc. Edinburgh, 115 A (1990) 301-318.

Wan Se Kim
Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea

E-mail address: wanskim@hanyang.ac.kr


[^0]:    Received March 25, 2014; Accepted May 26, 2014.
    2010 Mathematics Subject Classification. 34B16; 34B18; 34C23; 35J20.
    Key words and phrases. elliptic equations; critical exponents; bifurcation; multiplicity; positive solutions; super-sub subsolution; mountain pass lemma.
    ${ }^{1}$ Corresponding author.
    ${ }^{1}$ This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013057580).

