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MULTIPLE EXISTENCE OF POSITIVE GLOBAL SOLUTIONS FOR

PARAMETERIZED NONHOMOGENEOUS ELLIPTIC EQUATIONS

INVOLVING CRITICAL EXPONENTS

Wan Se Kim1

Abstract. We establish multiple extence of positive solutions for parameterized nonho-

mogeneous elliptic equations involving critical Sobolev exponent. The approach to the
problem is variational method.

1. Introduction

Let N ≥ 3 and 2∗ := 2N/(N − 2). Let consider a Hilbert space

H1(RN ) := {u ∈ L2(RN ) : ∇u ∈ L2(RN )}
with the inner product

(u, v) :=

∫
RN

(∇u · ∇v + uv)dx

and the corresponding norm

||u|| :=
(∫

RN
(|∇u|2 + |u|2)dx

)1/2

.

Let Ω be an open subset of RN . The space H1
0 (Ω) is the closure of C∞c (Ω) in H1(RN ). By

H−1(Ω), we denote its dual with the dual norm || · ||∗ and, by 〈, 〉 , the pairing of H1(RN )
with its dual. We denote by || · ||p the usual norm of Lp(RN ) for p ∈ [1,∞].

The space

D1,2(RN ) := {u ∈ L2∗
(RN ) : ∇u ∈ L2(RN )}

with the inner product ∫
RN
∇u · ∇v dx

and the corresponding norm (∫
RN
|∇u|2dx

)1/2

is also a Hilbert space. The space D1,2
0 (Ω) is the closure of C∞c (Ω) in D1,2(RN ). We note that

D1,2(RN ) = D1,2
0 (RN ) and H1

0 (Ω) ⊂ D1,2
0 (Ω). And, by the Poincare inequality, H1

0 (Ω) =
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D1,2
0 (Ω) if |Ω| < ∞. If N ≥ 3, then we also have a continuous embedding H1(RN ) ↪→

Lp(RN ), 2 ≤ p ≤ 2∗ and D1,2(RN ) ↪→ L2∗
(RN )(cf. [19]).

In this paper, we are concerned with the existence of multiple solutions of the following
problem:

(Pµ)

{
−∆u+ u = u2∗−1 + µf in RN ,

u > 0 in RN , N ≥ 3

where µ ∈ R+, f ∈ H−1(RN ), f ≥ 0 and f 6≡ 0 in RN .
A well-known result for the homoneneous case is that all positive regular solution of

−∆u = u2∗−1

= 0

in RN are given by

ωε =

(
ε
√
N(N − 2)

ε2 + |x|2

)(N−2)/2

with ε > 0(cf. [10]). Every ωε is a minimizer for the embedding D1,2(RN ) ↪→ L2∗
(RN ).

Namely, the Sobolev constant

S = inf
06=u∈D1,2(RN )

∫
RN |∇u|

2dx(∫
RN |u|2

∗dx
)2/2∗

is achived by ωε and

(1, 1) ||∇ωε||22 = ||ωε||2
∗

2∗ = SN/2.

For convenience, we omit “RN” and “dx” in integration and, throughout this paper, we
will use the letter C > 0 to denote the natural various contents independent of u.

Our attempt to show multiplicity of positive solutions for problem (Pµ) relies on the
Ekeland’s variational principle in [9] and the Mountain Pass Theorem in [4]. Since our
problem (Pµ) posesses the critical nonlinearity and the embedding H1(RN ) ↪→ L2∗

(RN )
is not compact, in taking the opportunity of variational structure of problem, the (PS)
condition is no longer valid and so the Mountain Pass Theorem in [1] could not be applied
directly. However, we can use the Mountain Pass Theorem without the (PS) condition in
[4] to get some (PS)c sequence of the variational functional for the second solution with
c > 0.

In the last decade, the existence and properties of solutions of the problem:

(P0)

{
−∆u+ u = g(x, u), u > 0 in RN ,

u ∈ H1(RN ), N ≥ 2

has been stuied by Struss[18], Lions[16, 17], Ding and Ni[8], Cao[5], Zhu[20](cf. [15] ) and
other authors for the case where g(x, 0) = 0 on RN and g(x, t) has a subcritical superlinear
growth. On the other hand, the nonhomogeneous problem with 1 < p < 2∗ − 1:

(P )

{
−∆u+ u = |u|p−2u+ µf, u > 0 in RN ,

u ∈ H1(RN ), N ≥ 2,

where µ ∈ R+, f ≥ 0, f ∈ L2(RN ) with an exponential decay on RN , was studied by
Zhu[21](cf. also [11]). In [21], the existence of at least two solutions of (P ) was proved
was proved for positive functions f ∈ L2(RN ) with a small L2-norm and exponential decay
f(x) ≤ Cexp{−(1+ε)|x|}, for x ∈ RN . The multiplicity of positive solutions for problem (P )
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for the subcritical case was stuied by Deng and Li[7]. In [12], the existence of at least four
solutions of (P ) with N ≥ 3 was established. In the critical case p = 2∗, the problem is much
more difficult than the subcritical case. As we mentioned, the Palais-Smale condition does
not hold at some critical levels and the effect of the nonhomogeneous term f to the multiple
existence of solutions is delicate. The multiplicity of the solutions of (P ), also (Pµ), depends
not only on the norm of f, but also the decay rate and the shape of f . In [6], it has shown
that if N < 6 and |x|N−2f is bounded, then there exists µ∗ > 0 such that problem (P ) has
at least two positive solutions with µ ∈ (0, µ∗). In case that N ≥ 6, there exist µ∗∗, µ∗ > 0
with µ∗ < µ∗∗ such that for each µ ∈ (µ∗∗, µ∗), problem (P ) possesses two positive solutions
and for µ ∈ (0, µ∗), problem (P ) has a unique solution(See also [7] for subcritical case).
For nonhomogeneous case with critical growth nonlinearity, we refer [2]. The effact of the
shape of the multiplicity of (P ) was investigated in [14]. In [13], the authors consider the
multiplicity of solutions of (P ) with −∆ + I replaced by −∆ + αI and α > 0. Authors
assume that p = 2∗, 3 ≤ N ≤ 5, f ∈ L2∗/(2∗−1)(RN ) ∩ L∞(RN ) with f ≥ 0 and f 6≡ 0, and
|x|N−2f is bounded. It was shown that there exist µ∗ and a function α : (0, µ∗)→ R+ such
that for each α ∈ (0, α(µ)), problem (P ) posesses at least three solutions; if we assume there
exist exactly two positive solutions then the third solution is sign-changing. In our results
we do not assume the decay rate on f but uniform boundedness of f which is independent
of solution u and x ∈ RN . There seems to have been a little progress on existence theory.

We can now state our main results:

Proposition 2.3. Assume f ∈ H−1(RN ), f(x) ≥ 0, f(x) 6≡ 0 in RN and ||µf ||∗ ≤ C∗N ,
then problem (Pµ) has at least one positive solution uµ such that

(2.1) Iµ(uµ) := c1 = inf{Iµ : u ∈ B̄R0
},

where B̄R0
= {u ∈ H1(RN ) : ||u|| ≤ R0}.

Proposition 2.5. Suppose that f ∈ H−1(RN ), f ≥ 0, f 6≡ 0 in RN and ||µf ||∗ ≤ C∗N .
Then there exist µ̃ ≥ µ̄ > 0 such that (Pµ) possesses a positive solution for 0 < µ ≤ µ̃ and
no positive solution for µ > µ̃.

Proposition 3.3. For µ = µ∗, the problem (Pµ) has a positive solution uµ∗ and
λ1(µ∗) = 1. Moreover, the solution uµ∗ is unique in H1(RN ).

Theorem 3.8. Suppose 3 ≤ N ≤ 5. Assume f ∈ H−1(RN ), f ≥ 0, f 6≡ 0 in RN and
||µf ||∗ ≤ C∗N . Then there exists a positive constant µ∗ > 0 such that (Pµ) possesses at least
two positive solutions for 0 < µ < µ∗, a unique solution for µ = µ∗ and no positive solution
if µ > µ∗.

2. Existence of minimal positive solutions

Lemma 2.1. The operator −∆ + I has the maximum principle in H1(RN ).

Proof. Let h ≥ 0 and −∆u + u = h. Suppose that u− 6≡ 0, where u+ = max{u(x), 0} and
u− = min{u(x), 0}. then 0 <

∫
|∇u−|2 + |u−|2) =

∫
hu−dx which leads a contradiction.

This completes the proof.
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In order to get the existence of positive solutions for (Pµ), we consider the energy func-
tional Iµ of the problem (Pµ) defined by

Iµ(u) =
1

2

∫
(|∇u|2 + |u|2)− 1

2∗

∫
(u+)2∗

− µ
∫
fu, for u ∈ H1(RN ).

First, we study the existence of a local mininum for energy functional Iµ and its proper-
ities. We denote

(2, 1) C∗N =
1

2

(
4

N + 2

)(
N

N + 2

)(N−2)/4

SN/4.

Lemma 2.2. Assume f ∈ H−1(RN ), f(x) ≥ 0, f(x) 6≡ 0 and ||µf ||∗ ≤ C∗N , then there
exits a positive const R0 > 0 such that Iµ(u) ≥ 0 for any u ∈ ∂BR0

= {u ∈ H1(RN ) : ||u|| =
R0}.

Proof. We consider the function h(t) : [0,+∞)→ RN defined by

h(t) =
1

2
t− 1

2∗
S−2∗/2t2

∗−1.

Note that h(0) = 0, 2∗−1 > 1 and h(t)→ −∞ as t→∞. We can show easly there a unique
t0 > 0 achieving the maxinum of h(t) at t0. Since

h′(t0) =
1

2
− 2∗ − 1

2∗
S−2∗/2t2

∗−2
0 = 0,

we have

t0 =

[
2∗

2(2∗ − 1)

]1/(2∗−2)

S2∗/2(2∗−2).

Hence, we have

(2, 2) h(t0) =
1

2

(
4

N + 2

)(
N

N + 2

)(N−2)/4

SN/4.

Taking R0 = t0, for all u ∈ ∂BR0
,

(2, 3)

Iµ(u) =
1

2

∫
(|∇u|2 + |u|2)− 1

2∗

∫
(u+)2∗

− µ
∫
fu

≥ 1

2
||u||2 − 1

2∗
S−2∗/2||u||2

∗
− ||µf ||∗||u||

= t0 [h(t0)− ||µf ||∗]

From (2, 2) and (2, 3), we have Iµ(u)|∂BR0
≥ 0.

Proposition 2.3. Assume f ∈ H−1(RN ), f(x) ≥ 0, f(x) 6≡ 0 in RN and ||µf ||∗ ≤ C∗N ,
then problem (Pµ) has at least one positive solution uµ such that

(2.1) Iµ(uµ) := c1 = inf{Iµ : u ∈ B̄R0},

where B̄R0
= {u ∈ H1(RN ) : ||u|| ≤ R0}.
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Proof. By Sobolev inequality, the generalized Hölder and Young’s inequality with ε > 0,
there exists Cε > 0, we have

Iµ(u) =
1

2

∫
(|∇u|2 + |u|2)− 1

2∗

∫
(u+)2∗

− µ
∫
fu

≥ 1

2
||u||2 − 1

2∗
S−2∗/2||u||2

∗
− ||µf ||∗||u||

≥
(

1

2
− ε
)
||u||2 − 1

2∗
S−2∗/2||u||2

∗
− Cε||µf ||2∗.

Taking ε < 1
2 , then, for R0 = t0 as in Lemma 2,2, we can find a CR0

> 0 small enough
such that

(2.2) Iµ(u)|∂BR0
≥ CR0

for ||µf ||∗ ≤ C∗N .

Since there exists a C̃R0
> 0 such that |Iµ(u)| ≤ C̃R0

for all u ∈ B̄R0
and B̄R0

is a complete
metric space with respect to the metric d(u, v) = ||u−v||, u, v ∈ B̄R0 , by using the Ekeland’s
variational principle, from (2.2), we can prove that there exists a sequence {un} ⊂ B̄R0 and
uµ ∈ B̄R0

such that

(2.3) Iµ(un)→ c1,

(2.4) I ′µ(un)→ 0,

(2.5) un → uµ weakly in H1(RN ),

un → uµ a.e. in RN ,

∇un → ∇uµ a.e. in RN

and

un
2∗−1 → uµ

2∗−1 weakly in
(
L2∗

(RN )
)∗

as n→∞.

Therefore, uµ is a weak solution of (Pµ). Hence,

(2.6)
〈
I ′µ(uµ), ϕ

〉
= 0 ∀ϕ ∈ H1(RN ).

Moreover, by Lemma 2.1, uµ is positive on RN , where I ′µ is the Frėchlet derivative of Iµ.
Next, we are going to prove (2.1). In fact, by the definition of c1, we know that Iµ(uµ) ≥ c1

since uµ ∈ B̄R0 , that is,

(2.7) Iµ(uµ) =
1

2

∫
(|∇uµ|2 + |uµ|2)− 1

2∗

∫
|uµ|2

∗
− µ

∫
fuµ ≥ c1

By (2.6) and (2.7), we have

(2.8)

(
1

2
− 1

2∗

)∫
(|∇uµ|2 + |uµ|2)−

(
1− 1

2∗

)
µ

∫
fuµ ≥ c1

On the other hand, by (2.3) - (2.5) and Fatou’s lemma, we get

(2.9)

c1 = lim inf
n

(
1

2
− 1

2∗

)∫
(|∇un|2 + |un|2)− lim sup

n
(1− 1

2∗
)µ

∫
fun

≥
(

1

2
− 1

2∗

)∫
(|∇uµ|2 + |uµ|2)−

(
1− 1

2∗

)
µ

∫
fuµ.

Thus, (2.7) and (2.9) imply (2.1) holds. This completes the proof.
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Remark. (1) c1 < 0, (2) c1 is bounded below, (3) ||uµ|| = o(1) as µ→ 0+.

Indeed: (1) For t > 0 and ϕ > 0, we have

Iµ(tϕ) =
t2

2

∫
(|∇ϕ|2 + |ϕ|2)− t2

∗

2∗

∫
|ϕ|2

∗
− tµ

∫
fϕ ≤ t2

2
||ϕ||2 − tµ

∫
fϕ.

By taking t > 0 sufficiently small, we can see c1 < 0.
(2) By (2.9) with ϕ = uµ, and c1 = Iµ(uµ), we have

(2.10)

c1 =

(
1

2
− 1

2∗

)∫
(|∇uµ|2 + |uµ|2)−

(
1− 1

2∗

)
µ

∫
fuµ

≥
(

1

2
− 1

2∗

)
||uµ||2 −

(
1− 1

2∗

)
||µf ||∗||uµ||

≥ − 1

22∗

[
(2∗ − 1)2

2∗ − 2

]
||µf ||2∗

by Young’s inequality.
(3) Since c1 < 0, from (2.10), we see that ||uµ|| → 0 as µ → 0+. Hence, ||uµ|| = o(1) as

µ→ 0+. We also have that ||uµ||µ is uniformly bounded with respect to µ. We will restate
results relating to this remark in Proposition 3.4 more precisely.

Proposition 2.4. Problem (Pµ) possesses at least one minimal positive solution of
(Pµ).

Proof. Let N be the Nehari manifold (cf. [19]):

N =

{
u ∈ H1(RN ) :

∫
|∇u|2 + |u|2 =

∫
|u|2

∗
+

∫
µfu

}
\ {0} .

Note that ||µf ||∗ � 1 for µ small enough and for each u ∈ H1(RN ) \ {0} , there exists a
unique tu > 0 such that

t2u

∫
|∇u|2 + |u|2 − t2

∗

u

∫
|u|2

∗
− tu

∫
µfu = 0

and Iµ(tuu) > 0. Then

N =
{
tuu : u ∈ H1(RN ) \ {0}

}
and

N ∼= SN−1 =
{
u ∈ H1(RN ) : ||u|| = 1

}
.

Hence,
H1(RN ) = H1 ∪H2 ∪N , H1 ∩H2 = φ and 0 ∈ H1,

where
H1 =

{
tu : u ∈ H1(RN ) \ {0} , t ∈ [0, tu)

}
H2 =

{
tu : u ∈ H1(RN ) \ {0} , t > tu

}
.

This implies that for t > 0 with t < tu, tu ∈ H1.
Here, we need to switch our view point, by associating with v a mapping

v : [0,∞[→ H1(RN )

defined by
[v(t)]x = v(x, t), x ∈ RN , t ∈ [0,∞[.

In other words, we consider v not as a function of x and t together, but rather as a mapping
v of t into the space H1(RN ) of functions of x.
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We have, for any v0 ∈ H1, the solution v of the initial value problem
dv

dt
−∆v + v = v2∗−1 + µf(x),

v(0) = v0,

converges to uµ as t→∞,
Indeed, in the proof of Proposition 2.2, we know that Iµ(v(t)) is decreasing and limt→∞ Iµ(v(t)) =

Iµ(uµ), where Iµ(uµ) is the local minimum.
Since

Iµ(v(t))− Iµ(v(s)) =

∫ t

s

d

dt
Iµ(v(t))dt

=

∫ t

s

〈
d

dt
v,∇Iµ(v(t))

〉
dt

= −
∫ s

t

∥∥∥∥ ddtv
∥∥∥∥2

dt,

we have, lims,t→∞
∥∥ d
dtv
∥∥2

= 0. Thus, v′ → 0 a.e. in RN as t→∞ and hence,
〈
I ′µ(v), ϕ

〉
→

0, ∀ϕ ∈ C∞(RN ). Therefore, we have v → uµ as t → ∞, since Iµ(v(t)) is decreasing and
converges to the local minimum Iµ(uµ).
Now, let v0 = tu, where t ∈ (0, 1) and u is a positive solution. Then u ∈ N and v0 ∈ H1.
Since v0 ≤ u and the solution v converges uµ as t → ∞, by the order preserving principle,
uµ ≤ u . This completes the proof.

Remark. We see that minimal solution of (Pµ) is unique from Proposition 2.3 and Propo-
sition 2.4.

Proposition 2.5. Suppose that f ∈ H−1(RN ), f ≥ 0, f 6≡ 0 and ||µf ||∗ ≤ C∗N . Then
there exist µ̃ ≥ µ̄ > 0 such that (Pµ) possesses a positive solution for 0 < µ ≤ µ̃ and no
positive solution for µ > µ̃.

Proof. By Proposition 2.3, (Pµ) has a positive solution if µ ≤ C∗N/||f ||∗. Suppose (Pµ) has
a positive solution ū for some µ = µ̄. We show that (Pµ) has a positive solution for any
0 < µ < µ̄. For fixed 0 < µ < µ̄, using the Lax-Milgram Theorem, we construct a positive
sequence {un} as following;

Let

−∆u1 + u1 = µf

and

(2.11) −∆un + un = u2∗−1
n−1 + µf for n ≥ 2.

Then, by the maximum principle, we have 0 < un < un+1 < · · · < ū for n ≥ 1. And
||u1|| ≤ µ||f ||∗ and ||u1||2∗ ≤ S−1/2||u1|| ≤ S−1/2µ||f ||∗. Multiplying (2.11) by un, we have
||un|| ≤ S−2∗/2||ū||2∗−1 + µ||f ||∗. Therefore, there exists ũ in H1(RN ) such that

un → ũ weakly in H1(RN ) as n→∞,

un → ũ a.e. in RN as n→∞,
∇un → ∇ũ a.e. in RN,

u2∗−1
n → ũ2∗−1 weakly in (L2∗

(RN ))∗ as n→∞.
Thus, ũ is a positive solution of (Pµ).
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Next, let u be a positive solution of (Pµ). Then, for any ε > 0, multiplying (Pµ) by ω2∗

ε ,
we have

(2.12) −∆uω2∗

ε + uω2∗

ε = u2∗−1ω2∗

ε + µf(x)ω2∗

ε .

Since 2∗ > 2, for any M > 0, there exists a constant C > 0 such that

u2∗−1 ≥Mu− C ∀u > 0.

Hence, we have, from (2.12),

−
∫

∆uω2∗

ε +

∫
uω2∗

ε ≥
∫ (

(Mu− C)ω2∗

ε + µf(x)ω2∗

ε )
)
.

By Green’s formular, we have ∫
∆uω2∗

ε =

∫
u∆ω2∗

ε .

Thus,

(2.13) µ

∫
f(x)ω2∗

ε ≤ C
∫
ω2∗

ε +

∫ (
1−M − ∆ω2∗

ε

w2∗
ε

)
ω2∗

ε u.

Since

∆w2∗

ε

ω2∗
ε

=
∆(ε+ |x|2)−N

(ε+ |x|2)−N
= 2N(N + 1)(ε+ |x|2)−2

(
N + 2

N + 1
|x|2 − N

N + 1
ε

)
= 2N(N + 1)(ε+ 02)−2

(
N + 2

N + 1
02 − N

N + 1
ε

)
= −2N2ε−1,

we get, from (2.13),

µ

∫
f(x)ω2∗

ε ≤ C
∫
ω2∗

ε +
(
2N2ε−1 + 1−M

) ∫
ω2∗

ε u.

If we choose M = 2N2ε+ 1, then, by (1.1), we have

µ ≤ Cω2∗

ε∫
f(x)ω2∗

ε

=
CSN/2∫
f(x)ω2∗

ε

.

Hence, there exists µ̄ > 0 such that

(2.14) µ̄ ≤ µ̃ + inf
ε>0

C
∫
w2∗

ε∫
f(x)ω2∗

ε

= inf
ε>0

CSN/2∫
f(x)ω2∗

ε

.

Therefore, if µ > µ̃, then (Pµ) has no solution and this completes the proof.

3. Multiplicity of positive solutions

From now on, we assume that f ∈ H−1(RN ), f ≥ 0, f 6≡ 0 in RN and f satisfies
||µf ||∗ � 1 for µ small enough.

We set

µ∗ := sup{µ ∈ R+ : (Pµ) has at least one positive solution in H1(RN )}.

Then, by Proposition 2.5, we have 0 < µ̄ ≤ µ∗ <∞.
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Remark. The minimal solution uµ of (Pµ) is monotonic increasing with respect to µ.
Indeed, suppose µ∗ > ν > µ. Since

−∆uν + uν − u2∗−1
ν − µf(x) = (ν − µ)f ≥ 0,

uν > 0 is a supersolution of (Pµ). Since f(x) ≥ 0 and f(x) 6≡ 0, u ≡ 0 is a subsolution of
(Pµ) for any µ > 0. By the standard barrier method, we can obtain a solution uµ of (Pµ)
such that 0 ≤ uµ ≤ uν on RN . We note that 0 is not a solution of (Pµ), ν > µ and uµ is a
minimal solution of (Pµ) since uµ can be derived by an iteration scheme with initial value
u(0) = 0. Therefore, by the maximal principle, 0 < uµ < uν on RN which completes the
proof.

Now, consider the corresponding eigenvalue problem:

(3.1)µ

{
−∆ϕ+ ϕ = λ(µ)(2∗ − 1)u2∗−2

µ ϕ,

ϕ in H1(RN ).

Let λ1 be the first eigenvalue of (3.1)µ;i.e.,

λ1 = λ1(µ) := inf{
∫ (
|∇ϕ|2 + |ϕ|2

)
: ϕ ∈ H1(RN ), (2∗ − 1)

∫
u2∗−2
µ ϕ2dx = 1}.

Then, 0 < λ1 <∞ and we can achieve the minimum by some function ϕ1 = ϕ1(µ) ∈ H1(RN )
and ϕ1 > 0 in RN if µ ∈ (0, µ∗) (cf. [22]).

We summarize basic properties for λ1(µ).

Lemma 3.1. (1) For µ ∈ (0, µ∗), λ1(µ) > 1;
(2) If 0 < µ < ν ≤ µ∗, then λ1(ν) < λ1(µ);
(3) λ1(µ)→ +∞ as µ→ 0+.

Proof. (1) For given 0 < µ < ν ≤ µ∗, every solution uν of (Pµ) with ν ∈ (µ, µ∗) is a
supersolution of (Pµ). By Taylor expansion, we have

−∆(uν − uµ) + u(uν − uµ) = u2∗−1
ν − u2∗−1

µ + (ν − µ)f

> (2∗ − 1)u2∗−2
µ (uν − uµ)

and moreover, we get∫
∇(uν − uµ)∇ϕ1 +

∫
(uν − uµ)ϕ1 =

∫ (
u2∗−1
ν − u2∗−1

µ

)
ϕ1 +

∫
(ν − µ)fϕ1

> (2∗ − 1)

∫
u2∗−2
µ (uν − uµ)ϕ1.

Therefore, from (3.1)µ, we have∫
∇(uν − uµ)∇ϕ1 +

∫
(uν − uµ)ϕ1 = λ1(µ)(2∗ − 1)

∫
u2∗−2
µ (uν − uµ)ϕ1,

which implies λ1(µ) > 1.
(2) Since, for 0 < µ < ν ≤ µ∗, uµ < uν and

λ1(µ)(2∗ − 1)

∫
u2∗−2
µ ϕ1(µ)ϕ1(ν) =

∫
∇ϕ1(µ)∇ϕ1(ν) +

∫
ϕ1(µ)ϕ1(ν)

= λ1(ν)(2∗ − 1)

∫
u2∗−2
ν ϕ1(ν)ϕ1(µ),
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we have λ1(µ) > λ1(ν).
(3) First, we show that ||uµ|| → 0 as µ→ 0+. Multiplying (Pµ) by uµ, we have,∫ (

|∇uµ|2 + |uµ|2
)

=

∫
u2∗

µ +

∫
µfuµ

and hence, for ε > 0, we have, by Young’s inequality with ε,(
1− 1

λ1(2∗ − 1)
− ε

2

)
||uµ||2 ≤

µ2

2ε
||f ||2∗ for ε > 0.

Thus, for ε > 0 small, we have ||uµ|| ≤ Cεµ
2 for some constant Cε > 0, and hence, ||uµ|| =

o(1) as µ→ 0+. Next, Multiplying (Pµ) by ϕ1(µ), we have, by Hölder’s inequality, that∫ (
|∇ϕ1|2 + |ϕ1|2

)
= λ1(2∗ − 1)

∫
u2∗−2
µ ϕ2

1

≤ λ1(2∗ − 1)

(∫
u2∗

µ

)(2∗−2)/2∗ (∫
ϕ2∗

1

)2/2∗

≤ λ1(2∗ − 1)

(∫
u2∗

µ

)(2∗−2)/2∗ (∫
|∇ϕ1|2

)
≤ λ1(2∗ − 1)S−(2∗−2)/2||uµ||2

∗−2||ϕ1||2

and thus, S(2∗−2)/2 ≤ λ1 · (2∗ − 1)||uµ||2
∗−2. Therefore, we have the desired result. This

completes the proof.

Lemma 3.2. Let uµ be a positive solution of (1.3)µ for which λ1(µ) > 1. Then, for
any g ∈ H1(RN ), the problem:

(3.2) −∆w + w = (2∗ − 1)u2∗−2
µ w + g(x), w ∈ H1(RN )

has a solution.

Proof. Consider the functional defined by

J(w) =
1

2

∫ (
|∇w|2 + |w|2

)
− 1

2
(2∗ − 1)

∫
u2∗−2
µ w2 −

∫
gw, w ∈ H1(RN ).

From Hölder’s inequality and Young’s inequality, we have, for any ε > 0,

J(w) ≥
(

1

2
− 1

2λ1(µ)

)
||w||2 − ε

2
||w||2 − 1

2ε
||g||2∗

=

(
1

2
− 1

2λ1(µ)
− ε

2

)
||w||2 − 1

2ε
||g||2∗

and hence, for small ε > 0, there exist C1,ε > 0 and C2,ε > 0 such that

(3.3) J(w) ≥ C1,ε||w||2 − C2,ε||g||2∗.

Let {wn} ⊂ H1(RN ) be the minimizing sequence of variational problem

d = inf{J(w)|w ∈ H1(RN )}.
From (3.3), we can also deduce that {wn} is bounded in H1(RN ). So we may suppose that

wn → w weakly in H1(RN ) as n→∞,

wn → w a.e. in RN as n→∞
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Here, we also note that

∇wn → ∇w a.e. in RN as n→∞.
And

u2∗−1
n → ũ2∗−1 weakly in (L2∗

(RN ))∗ as n→∞.
By Fatou’s Lemma

||w||2 ≤ lim inf
n→∞

||wn||2.

The weak convergence and the fact that
∫
u2∗−2
µ w2

n <∞ for n ≥ 1 imply

lim
n→∞

∫
gwn =

∫
gw, lim

n→∞

∫
u2∗−2
µ wn =

∫
u2∗−2
µ w

and hence,

J(w) ≤ lim
n→∞

J(wn) = d.

Then, J(w) = d and w is a minimizer of J. Therefore, w is a critical point of J and w is a
solution of (3.2). This completes the proof.

Proposition 3.3. For µ = µ∗, the problem (Pµ) has a positive solution uµ∗ and
λ1(µ∗) = 1. Moreover, the solution uµ∗ is unique in H1(RN ).

Proof. For µ ∈ (0, µ∗), multiplying (Pµ) by uµ, we have, by (3.1)µ,∫ (
|∇uµ|2 + |uµ|2

)
=

∫
u2∗

µ + µ

∫
fuµ

≤ 1

λ1(µ)(2∗ − 1)

∫
(|∇uµ|2 + |uµ|2) + µ∗||f ||∗||uµ||

=

(
1

λ1(µ)(2∗ − 1)
+
εµ∗

2

)
||uµ||2 +

µ∗

2ε
||f ||2∗.

By taking ε > 0 small enough, there exists an constant Cε > 0 such that ||uµ|| ≤ Cε for all
µ ∈ (0, µ∗). Then, there exists uµ∗ in H1(RN ) such that uµ monotonically increasing to uµ∗

as µ→ µ∗ and uµ → uµ∗ weakly in H1(RN ) as µ→ µ∗. Hence, uµ∗ is a positive solution of
(Pµ) with µ = µ∗. We note that λ1(µ) is a continuous function of µ ∈ (0, µ∗] .

Define F : R1 ×H1(RN )→ H−1(RN ) by

F (µ, u) = ∆u− u+ (u+)2∗−1 + µf(x).

Since uµ → uµ∗ weakly as µ → µ∗, from Lemma 3.1, λ(µ∗) ≥ 1. If λ1(µ∗) > 1, then

Fu(µ∗, uµ∗)ϕ = ∆ϕ− ϕ+ (2∗ − 1)u2∗−2
µ∗ ϕ = 0 has no nontrivial solution. From Lemma 3.2,

F (µ∗, uµ∗) is an isomorphism of R1×H1(RN ) onto H−1(RN ), and by the implicitly function
theorem to F, we find a neighborhood (µ∗ − δ, µ∗ + δ) of u∗ such that (Pµ) possesses a
positive solution if µ ∈ (µ∗ − δ, µ∗ + δ), which contradicts the definition of µ∗. Therefore,
λ1(µ∗) = 1.

Suppose Uµ∗ is a positive solution of (Pµ∗). Then Uµ∗ ≥ uµ∗ since uµ∗ is minimal. Let
w = Uµ∗ − uµ∗ . Then, since λ1(µ∗) = 1, we have

−∆w − w ≥ (2∗ − 1)u2∗−2
µ∗ w.

Let ϕ1 = ϕ1(µ∗) be the eigenfunction of the problem (3, 1)µ∗ . Then,

(2∗ − 1)

∫
u2∗−2
µ∗ ϕ1w =

∫
∇w∇ϕ1 +

∫
wϕ1 ≥ (2∗ − 1)

∫
u2∗−1
µ∗ wϕ1
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and hence, w ≡ 0. This completes the proof.

Proposition 3.4. The minimal solution uµ of (Pµ) increasing continuously to uµ∗ as
µ → µ∗ and uniformly bounded in H1(RN ) for all µ ∈ (0, µ∗]. Moreover, ||uµ|| ≤ O(µ2) as
µ→ 0+.

Proof. It suffices to find the uniform bound of uµ. Multiplying (Pµ) by uµ, we have∫ (
|∇uµ|2 + |uµ|2

)
=

∫
u2∗

µ +

∫
µfuµ

and hence, for ε > 0, we have(
1− 1

λ1(2∗ − 1)
− ε

2

)
||uµ||2 ≤

µ2

2ε
||f ||2∗ for ε > 0.

Therefore, for ε > 0 small, we have ||uµ|| ≤ Cεµ
2 for some constant Cε > 0. Next, fix

τ ∈ (0, µ∗]. If µ increasing to τ, then, by the first Remark in section 3, uµ converges
monotonically increasing way up to uτ in H1(RN ). If it is not the case, then, by multiplying
uµ on (Pµ) again, we have

||uµ||2 ≤
〈
u2∗−1
τ uµ

〉
+ τ 〈f, uµ〉

and so
||uµ|| ≤ CS−(2∗−1)/2||uτ ||2

∗−1 + τ ||f ||∗
for some C > 0. Hence, there exists a sequence {uµj} in H1(RN ) conversing weakly to a so-
lution ũ of (Pτ ). Then, by the maximum principle, uµj ≤ ũ < uτ which leads a contradiction
to the minimality of uτ . This completes the proof.

Next, we are going to find the second solution. In order to get another positive solution
of (Pµ), we consider the following problem:

(Qµ)

{
−∆v+v = (v + uµ)2∗−1 − u2∗−1

µ in RN ,

v ∈ H1(RN ), v > 0 in RN

and the corresponding variational functional:

Jµ(v) =
1

2

∫
|∇v|2 +

1

2

∫
|v|2 − 1

2∗

∫
[(v+ + uµ)2∗

− u2∗

µ − 2∗u2∗−1
µ v+]

for v ∈ H1(RN ).
Clearly, we can have another positive solution Uµ = uµ+vµ if we show the problem (Q)µ

possesses a positive solution vµ. We look for a critical point of Jµ which is a weak solution
of (Qµ) by employing standard argument of the Mountain Pass method without the (PS)
condition.

We set

(3.5) ψε(x) = ϕ(x)wε(x),

where ϕ(x) ∈ C∞c (RN ) is a cut off function and wε as in (1.1). Because uµ is the critical
point of Iµ(u), we can prove that

(3.6) Jµ(v) = Kµ(v)−Kµ(0) = Iµ(v)− Iµ(uµ),

where, for v ∈ H1(RN ),

Kµ(v) =
1

2

∫
(|∇(v + uµ)|2 + (v + uµ)2 − 1

2

∫
(v+ + uµ)− µ

∫
f(x)(v + uµ).
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By using the following estimations in [4], we know

(3.7) ||∇ψε||22 = SN/2 +O(ε(N−2)/2),

(3.8) ||ψε||2
∗

2∗ = SN/2 +O(εN
2/(2N−2)),

(3.9) ||ψε||22 =


C1ε+O(ε(N−2)/2), for N ≥ 5,

C1ε| ln ε|+O(ε(N−2)/2), for N = 4,

O(ε1/2), for N = 3,

where C1 is a positive constant independent of ε.

Lemma 3.5. Let v ∈ H1(RN ) \ {0}, v ≥ 0.
(1) For sufficiently small ε > 0, there exist ρ > 0, α > 0 such that

Jµ(v)|∂Bρ ≥ α > 0, and

(2) For t > 0,
Jµ(tv)→ −∞ as t→∞.

Proof. (1) Let v ∈ H1(RN ) \ {0}, v ≥ 0 Then, for ε > 0, by Young’s inequality,

Jµ(v) =
1

2

∫ (
|∇v|2 + |v|2

)
−
∫ ∫ v+

0

[(uµ + s)2∗−1 − u2∗−1
µ ]

≥ 1

2

(
1− 1

λ1

)∫ (
|∇v|2 + |v|2

)
−

−
∫ ∫ v+

0

[(uµ + s)2∗−1 − u2∗−1
µ − (2∗ − 1)u2∗−2

µ s]

≥ 1

2

(
1− 1

λ1

)∫ (
|∇v|2 + |v|2

)
−
∫ ∫ v+

0

[εu2∗−2
µ s+ Cεs

2∗−1]

≥ 1

2

(
1− 1

λ1

)
||v||2 − ε

2

∫
u2∗−2
µ (v+)2 − Cε

2∗ + 1

∫
(v+)2∗

≥ 1

2

(
1− 1

λ1
− ε

2(2∗ − 1)λ1

)
||v||2 − Cε

2∗
S−2∗/2||v||2

∗

for some constant Cε > 0. Hence, for sufficiently small ε > 0, there exist ρ > 0, α > 0 such
that

Jµ(v)|∂Bρ ≥ α > 0,

where Bρ = {u ∈ H1(RN ) : ||u|| < ρ}.
(2) Let v ∈ H1(RN ), v ≥ 0 and v 6≡ 0, then, for t > 0, we have

Jµ(tv) =
t2

2

∫
(|∇v|2 + |v|2)− 1

2∗

∫ (
(uµ + tv)2∗

− u2∗

µ − 2∗u2∗−1
µ tv

)
≤ t2

2

∫
(|∇v|2 + |v|2)− t2

∗

2∗

∫
|v|2

∗

≤ t2

2
||v||2 − t2

∗

2∗
||v||2

∗

2∗ .

Therefore, we deduce
Jµ(tv)→ −∞
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as t→∞. This completes the proof.

Lemma 3.6. Suppose 3 ≤ N ≤ 6. Then there exists some constant tε > 0, 0 < k1 ≤
tε ≤ k2 < +∞ such that supt≥0Jµ(tψε) = Jµ(tεψε) and

Jµ(tεψε) ≤
1

N
SN/2 −mk2∗−1

1

∫
B2η

ψ2∗−1
ε +


O(ε), for N ≥ 5,

O(ε| ln ε|), for N = 4,

O(ε1/2), for N = 3,

where µ ∈ (0, µ∗) and m = inf{uµ(x)|x ∈ B2η} > 0. Moreover,

Jµ(tεψε) <
1

N
SN/2.

Proof. By Lemma 3.5 and the fact 3 ≤ N ≤ 6, we can easely show that there exist tε > 0
such that Jµ(tεψε) = supt≥0Jµ(tψε), we claim that there exist some constants k1 > 0, k2 > 0
such that 0 < k1 ≤ tε ≤ k2 < +∞. In fact, since

Jµ(tεψε) = supt≥0Jµ(tψε),

dJµ(tψε)

dt
|t=tε = 0, tε > 0 and∫

|∇ψε|2 + |ψε|2 =

∫
[[(tεψε + uµ)2∗−1 − u2∗−1

µ )]/tε]ψε.

Therefore, we have

(3.10)
||∇ψε||22 + ||ψε||22

||ψε||2
∗

2∗
− t2

∗−2
ε =

∫
[[(tεψε + uµ)2∗−1 − u2∗−1

µ − (tεψε)
2∗−1/tε]ψε]

||ψε||2
∗

2∗

≥ 0
From (3.7) - (3.9), we have

t2
∗−2
ε ≤ ||∇ψε||

2
2 + ||ψε||2
||ψε||2

∗
2∗

≤ c2 < +∞

for ε small enough, and thus tε ≤ k2 for some k2 > 0.
On the other hand, it is easy to check that

lim
u→∞

(u+ uµ)2∗−1 − u2∗−1
µ − u2∗−1

u2∗−1
= 0.

Put u = tεψε. Then for any δ > 0, there exists a constant Cδ > 0 such that∫
(tεψε + uµ)2∗−1 − u2∗−1

µ − (tεψε)
2∗−1

||tεψε||2
∗

2∗

= [||ψε||2
∗

2∗ ]−1

∫
[(tεψε + uµ)2∗−1 − u2∗−1

µ − (tεψε)
2∗−1]ψε

tε

= [||ψε||2
∗

2∗ ]−1

∫
(δt2

∗−1
ε ψ2∗−1

ε + tεCδψε)ψε
tε

≤ [||ψε||2
∗

2∗ ]−1[δt2
∗−2
ε ||ψε||2

∗

2∗ + Cδ||ψε||22]

= δt2
∗−2
ε +O(ε1/2).
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Again, by (3.7) - (3.10),

1− t2
∗−2
ε ≤ ||ψε||2

∗

2∗

∫
[[(tεψε) + uµ)2∗−1 − u2∗−1

µ − (tεψε)
2∗−1]/tε]ψε

≤ δt2
∗−2
ε +O(ε1/2),

and thus, we have

1− t2
∗−2
ε − δt2

∗−2
ε +O(ε1/2) ≤ 0.

Choosing δ, ε small enough, we find a constant k1 > 0 such that tε ≥ k1. Moreover, from
the definition of Jµ and the inequality:

(v + uµ)p − upµ − vp ≥ puµvp−1 for every v ≥ 0, p > 2,

we have

Jµ(v) =
1

2

∫
(|∇v|2 + v2)− 1

2

∫
((v+ + uµ)2∗

− u2∗

µ − 2∗u2∗−1
µ v)

≤ 1

2

∫
(|∇v|2 + v2)− 1

2∗

∫
v2∗
− 2∗uµv

2∗−1.

Hence,

Jµ(tεψε) =
t2ε
2

∫
(|∇ψε|2 + |ψε|2)− 1

2∗

∫
(tεψε)

2∗
+ 2∗uµ(tψε)

2∗−2

=
t2ε
2

(||∇ψε||22 + ||ψε||22)− t2
∗

ε

2∗
||ψε||2

∗

2∗ − 2∗t2
∗−2

∫
uµψ

2∗−2
ε

≤
(
t2ε
2
− t2

∗

ε

2∗

)
||∇ψε||22 +

t2ε
2
||ψε||22 − 2∗t2

∗−2

∫
B2η

uµψ
2∗−2
ε .

From (3.7) - (3.9), we have

Jµ(tψε) ≤
1

N
SN/2 +O(ε(N−2)/2) +


K1ε+O(ε(N−2)/2) for N ≥ 5,

K1ε| ln ε|+O(ε(N−2)/2) for N = 4,

O(ε1/2) for N = 3,

− 2∗t2
∗−1

∫
B2η

uµψ
2∗−1
ε

≤ 1

N
SN/2 − 2∗t2

∗−1

∫
B2η

uµψ
2∗−1
ε

+


O(ε), for N ≥ 5,
O(ε| ln ε|), for N = 4,

O(ε1/2), for N = 3.

And, we have: for N = 5,

lim
ε→0+

ε−1

∫
B2η

ψ2∗−1
ε

≥ lim
ε→0+

ε−1

∫
Bη

ψ2∗−1
ε

= lim
ε→0+

(N(N − 2))(N+2)/4α(N)ε−1

∫ ηε−1/2

0

(
ε−(N−2)/4

(1 + z2)(N−2)/2

)2∗−1

εN/2ξN−1dz

= lim
ε→0+

ε(N−6)/4

∫ ηε−1/2

0

α(N)

(
1

1 + z2

)(N+2)/2

ξN−1dz →∞,
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where ξ = rε−1/2, r = |x| and α(N) denote the area of unit sphere, and for N = 4,

lim
ε→0+

ε−1| lnε |−1

∫
B2η

ψ2∗−1
ε

≥ lim
ε→0+

ε−1| lnε |−1

∫
Bη

ψ2∗−1
ε

= lim
ε→0+

(N(N − 2))(N+2)/4ρ(N)ε−1| lnε |−1

∫ η| lnε |

0

(
ε−(N−2)/4

(1 + z2)(N−2)/2

)2∗−1

εN/2ξN−1dz

= lim
ε→0+

ε(N−6)/4| lnε |N
∫ η| lnε |

0

ρ(N)

(
1

1 + z2

)(N+2)/2

rN−1dz →∞,

where ξ = r| lnε |, r = |x| and ρ(N) denote the area of unit sphere, and
for N = 3,

lim
ε→0+

ε−1ε1/2
∫
B2η

ψ2∗−1
ε

≥ lim
ε→0+

ε−1/2

∫
Bη

ψ2∗−1
ε

= lim
ε→0+

(N(N − 2))(N+2)/4α(N)ε−1/2

∫ ηε−1/2

0

(
ε−(N−2)/4

(1 + z2)(N−2)/2

)2∗−1

εN/2ξN−1dz

= lim
ε→0+

ε(N−4)/4

∫ ηε−1/2

0

α(N)

(
1

1 + z2

)(N+2)/2

ξN−1dz →∞,

where ξ = rε−1/2, r = |x| and α(N) denote the area of unit sphere. Consequently, we
deduce

Jµ(tεψε) <
1

N
SN/2.

This completes the proof.

Theorem 3.7. Suppose 3 ≤ N ≤ 5. Then the problem (Pµ) possesses at least two
positive solutions for all µ ∈ (0, µ∗).

Proof. Let

Γ = {γ ∈ C([0, 1], H1); γ(0) = 0, γ(1) = tεψε}
and

cµ = infγ∈Γmaxs∈[0,1]Jµ(γ(s)).

Then, we have, from Lemma 3.6,

(3.11) 0 < α ≤ cµ ≤ supt≥0Jµ(tεψε) <
1

N
SN/2.

We now applying the Mountain Pass Theorem without Palais-Smale condition in [4] to
get a subsequence {vn} ⊂ H1(RN ) such that

(3.12) Jµ(vn)→ cµ, J ′µ(vn)→ 0 in H−1(RN ).

Since
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1 + cµ + ||vn||+ ||uµ|| ≥ 1 + cµ + ||vn + uµ||

≥ Jµ(vn)− 1

2∗
J ′µ(vn)(v+

n + uµ)

≥
(

1

2
− 1

2∗

)
||vn||2 −

2

2∗
||vn||||uµ|| −

(
1− 1

2∗

)
||uµ||2

∗

2∗ ,

we see that {vn} is bounded in H1(RN ). Hence, there exists a subsequence {vn} such that

vn → vµ weakly in H1(RN ),

vn → vµ a.e. in RN ,

∇vn → ∇vµ a.e. in RN ,
and

(vn + uµ)2∗−1 − u2∗−1
µ → (v+ + uµ)2∗−1 − u2∗−1

µ weakly in (L2∗
(RN ))∗.

Then vµ is a weak solution of −∆v + v = (v+ + uµ)2∗−1 − u2∗−1
µ .

Using the maximal principle, we get vµ ≥ 0 in RN . Set un = vn + uµ, u = vµ + uµ. Then

un → u weakly in H1(RN ),

un → u a.e. in RN ,

∇un → ∇u a.e. in RN .
From (3.6),

(3.13) Jµ(vn) = Kµ(vn)−Kµ(0) = Iµ(vn)− Iµ(uµ)→ cµ as n→∞

and u is a solution of

(3.14) −∆u+ u = u2∗
+ µf(x).

Now, we are going to show that u 6≡ uµ. In fact, if u ≡ uµ, i.e., vµ ≡ 0, then un 6→ u strongly
in H1(RN ), since Jµ(0) = 0 < uµ. Let c1 = cµ + Iµ(uµ). By the Brezis-Lieb Lemma(cf. [3])
we have

(3.15)


||un||2 = ||uµ||2 + ||vn||2 + o(1),

|u+
µ |2

∗
= |uµ|2

∗
+ |v+

µ |2
∗

+ o(1),∫
fun =

∫
fun + o(1) as n→∞.

By (3.13), (3.14), we have∫
|∇uµ|2 + u2

µ =

∫
(u+
µ )2∗

+ µ

∫
f(x)uµ + o(1),∫

|∇uµ|2 + u2
µ =

∫
(u+
µ )2∗

+ µ

∫
f(x)uµ.

Hence, ∫
|∇vn|2 + v2

n =

∫
(v+
n )2∗

+ o(1),

by substracting the two identities above and by (3.15).
Using (3.13), (3.14), (3.15) and (3.16), we have that, as n→∞
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c1 = cµ + Iµ(uµ)

= Jµ(vn) + Iµ(uµ) + o(1)

= Iµ(un) + o(1)

= Iµ(uµ) +
1

2

∫
|∇vµ|2 + v2

µ −
1

2∗

∫
v2∗

n + o(1)

= Iµ(uµ) +

(
1

2
− 1

2∗

)∫
(vn)2 + o(1)

= Iµ(uµ) +
1

N

∫
(vn)2∗

+ o(1).

By Sobolev inequality (cf. [4], [7], [6]):

S||vn||22∗ ≤ ||vn||2 = ||vn||2
∗

2∗ + o(1),

we have ||wn||2
∗

2∗ ≥ SN/2. Thus,

c1 = cµ + Iµ(uµ) ≥ Iµ(uµ) +
1

N
SN/2(cf. ).

This leads a contradiction to (3.11). Therefore, we have vµ > 0. This completes the proof.

Consequently, we have

Theorem 3.8. Suppose 3 ≤ N ≤ 5. Assume f ∈ H−1(RN ), f ≥ 0, f 6≡ 0 in RN and
||µf ||∗ ≤ C∗N . Then there exists a positive constant µ∗ > 0 such that (Pµ) possesses at least
two positive solutions for 0 < µ < µ∗, a unique solution for µ = µ∗ and no positive solution
if µ > µ∗.
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