

MULTIPLE EXISTENCE OF POSITIVE GLOBAL SOLUTIONS FOR PARAMETERIZED NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL EXPONENTS

WAN SE KIM¹

ABSTRACT. We establish multiple extence of positive solutions for parameterized nonhomogeneous elliptic equations involving critical Sobolev exponent. The approach to the problem is variational method.

1. Introduction

Let $N \geq 3$ and $2^* := 2N/(N-2)$. Let consider a Hilbert space

$$H^1(\mathbb{R}^N):=\{u\in L^2(\mathbb{R}^N): \nabla u\in L^2(\mathbb{R}^N)\}$$

with the inner product

$$(u,v):=\int_{\mathbb{R}^N} (\nabla u\cdot \nabla v+uv)dx$$

and the corresponding norm

$$||u|| := \left(\int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx\right)^{1/2}.$$

Let Ω be an open subset of \mathbb{R}^N . The space $H_0^1(\Omega)$ is the closure of $C_c^{\infty}(\Omega)$ in $H^1(\mathbb{R}^N)$. By $H^{-1}(\Omega)$, we denote its dual with the dual norm $|| \cdot ||_*$ and, by \langle, \rangle , the pairing of $H^1(\mathbb{R}^N)$ with its dual. We denote by $|| \cdot ||_p$ the usual norm of $L^p(\mathbb{R}^N)$ for $p \in [1, \infty]$.

The space

$$D^{1,2}(\mathbb{R}^N):=\{u\in {L^2}^*(\mathbb{R}^N): \nabla u\in L^2(\mathbb{R}^N)\}$$

with the inner product

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v \ dx$$

and the corresponding norm

$$\left(\int_{\mathbb{R}^N} |\nabla u|^2 dx\right)^{1/2}$$

is also a Hilbert space. The space $D_0^{1,2}(\Omega)$ is the closure of $C_c^{\infty}(\Omega)$ in $D^{1,2}(\mathbb{R}^N)$. We note that $D^{1,2}(\mathbb{R}^N) = D_0^{1,2}(\mathbb{R}^N)$ and $H_0^1(\Omega) \subset D_0^{1,2}(\Omega)$. And, by the Poincare inequality, $H_0^1(\Omega) = D_0^{1,2}(\mathbb{R}^N)$

 $Key\ words\ and\ phrases.$ elliptic equations; critical exponents; bifurcation; multiplicity; positive solutions; super-sub subsolution; mountain pass lemma.

¹ Corresponding author.

¹ This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013057580).

©2014 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received March 25, 2014; Accepted May 26, 2014.

²⁰¹⁰ Mathematics Subject Classification. 34B16; 34B18; 34C23; 35J20.

 $D_0^{1,2}(\Omega)$ if $|\Omega| < \infty$. If $N \ge 3$, then we also have a continuous embedding $H^1(\mathbb{R}^N) \hookrightarrow L^p(\mathbb{R}^N)$, $2 \le p \le 2^*$ and $D^{1,2}(\mathbb{R}^N) \hookrightarrow L^{2^*}(\mathbb{R}^N)(cf.$ [19]).

In this paper, we are concerned with the existence of multiple solutions of the following problem:

$$(P_{\mu}) \qquad \qquad \begin{cases} -\Delta u + u = u^{2^* - 1} + \mu f \text{ in } \mathbb{R}^N, \\ u > 0 \text{ in } \mathbb{R}^N, \ N \ge 3 \end{cases}$$

where $\mu \in \mathbb{R}^+$, $f \in H^{-1}(\mathbb{R}^N)$, $f \ge 0$ and $f \ne 0$ in \mathbb{R}^N .

A well-known result for the homoneneous case is that all positive regular solution of

$$-\Delta u = u^{2^{*-1}} = 0$$

in \mathbb{R}^N are given by

$$\omega_{\epsilon} = \left(\frac{\epsilon \sqrt{N(N-2)}}{\epsilon^2 + |x|^2}\right)^{(N-2)/2}$$

with $\epsilon > 0(cf. [10])$. Every ω_{ϵ} is a minimizer for the embedding $D^{1,2}(\mathbb{R}^N) \hookrightarrow L^{2^*}(\mathbb{R}^N)$. Namely, the Sobolev constant

$$S = \inf_{0 \neq u \in D^{1,2}(\mathbb{R}^N)} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 dx}{\left(\int_{\mathbb{R}^N} |u|^{2^*} dx\right)^{2/2^*}}$$

is achived by ω_{ϵ} and

(1,1)
$$||\nabla \omega_{\epsilon}||_{2}^{2} = ||\omega_{\epsilon}||_{2^{*}}^{2} = S^{N/2}.$$

For convenience, we omit " \mathbb{R}^N " and "dx" in integration and, throughout this paper, we will use the letter C > 0 to denote the natural various contents independent of u.

37/0

Our attempt to show multiplicity of positive solutions for problem (P_{μ}) relies on the Ekeland's variational principle in [9] and the Mountain Pass Theorem in [4]. Since our problem (P_{μ}) possesses the critical nonlinearity and the embedding $H^1(\mathbb{R}^N) \hookrightarrow L^{2^*}(\mathbb{R}^N)$ is not compact, in taking the opportunity of variational structure of problem, the (PS) condition is no longer valid and so the Mountain Pass Theorem in [1] could not be applied directly. However, we can use the Mountain Pass Theorem without the (PS) condition in [4] to get some $(PS)_c$ sequence of the variational functional for the second solution with c > 0.

In the last decade, the existence and properties of solutions of the problem:

$$(P_0) \qquad \begin{cases} -\Delta u + u = g(x, u), u > 0 \text{ in } \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \ N \ge 2 \end{cases}$$

has been stuide by Struss[18], Lions[16, 17], Ding and Ni[8], Cao[5], Zhu[20](cf. [15]) and other authors for the case where g(x, 0) = 0 on \mathbb{R}^N and g(x, t) has a subcritical superlinear growth. On the other hand, the nonhomogeneous problem with 1 :

(P)
$$\begin{cases} -\Delta u + u = |u|^{p-2}u + \mu f, u > 0 \text{ in } \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \ N \ge 2, \end{cases}$$

where $\mu \in \mathbb{R}^+$, $f \ge 0$, $f \in L^2(\mathbb{R}^N)$ with an exponential decay on \mathbb{R}^N , was studied by $\operatorname{Zhu}[21](cf. \text{ also } [11])$. In [21], the existence of at least two solutions of (P) was proved was proved for positive functions $f \in L^2(\mathbb{R}^N)$ with a small L^2 -norm and exponential decay $f(x) \le \operatorname{Cexp}\{-(1+\epsilon)|x|\}$, for $x \in \mathbb{R}^N$. The multiplicity of positive solutions for problem (P)

for the subcritical case was stuid by Deng and Li[7]. In [12], the existence of at least four solutions of (P) with $N \ge 3$ was established. In the critical case $p = 2^*$, the problem is much more difficult than the subcritical case. As we mentioned, the Palais-Smale condition does not hold at some critical levels and the effect of the nonhomogeneous term f to the multiple existence of solutions is delicate. The multiplicity of the solutions of (P), also (P_{μ}) , depends not only on the norm of f, but also the decay rate and the shape of f. In [6], it has shown that if N < 6 and $|x|^{N-2}f$ is bounded, then there exists $\mu^* > 0$ such that problem (P) has at least two positive solutions with $\mu \in (0, \mu^*)$. In case that $N \ge 6$, there exist $\mu^{**}, \mu_* > 0$ with $\mu_* < \mu^{**}$ such that for each $\mu \in (\mu^{**}, \mu^*)$, problem (P) possesses two positive solutions and for $\mu \in (0, \mu_*)$, problem (P) has a unique solution (See also [7] for subcritical case). For nonhomogeneous case with critical growth nonlinearity, we refer [2]. The effact of the shape of the multiplicity of (P) was investigated in [14]. In [13], the authors consider the multiplicity of solutions of (P) with $-\Delta + I$ replaced by $-\Delta + \alpha I$ and $\alpha > 0$. Authors assume that $p = 2^*, 3 \leq N \leq 5, f \in L^{2^*/(2^*-1)}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ with $f \geq 0$ and $f \not\equiv 0$, and $|x|^{N-2}f$ is bounded. It was shown that there exist μ_* and a function $\alpha:(0,\mu_*)\to\mathbb{R}^+$ such that for each $\alpha \in (0, \alpha(\mu))$, problem (P) possesses at least three solutions; if we assume there exist exactly two positive solutions then the third solution is sign-changing. In our results we do not assume the decay rate on f but uniform boundedness of f which is independent of solution u and $x \in \mathbb{R}^N$. There seems to have been a little progress on existence theory.

We can now state our main results:

PROPOSITION 2.3. Assume $f \in H^{-1}(\mathbb{R}^N)$, $f(x) \ge 0$, $f(x) \ne 0$ in \mathbb{R}^N and $||\mu f||_* \le C_N^*$, then problem (P_μ) has at least one positive solution u_μ such that

(2.1)
$$I_{\mu}(u_{\mu}) := c_1 = \inf\{I_{\mu} : u \in B_{R_0}\},\$$

where $\bar{B}_{R_0} = \{ u \in H^1(\mathbb{R}^N) : ||u|| \le R_0 \}.$

PROPOSITION 2.5. Suppose that $f \in H^{-1}(\mathbb{R}^N)$, $f \ge 0$, $f \ne 0$ in \mathbb{R}^N and $||\mu f||_* \le C_N^*$. Then there exist $\tilde{\mu} \ge \bar{\mu} > 0$ such that (P_{μ}) possesses a positive solution for $0 < \mu \le \tilde{\mu}$ and no positive solution for $\mu > \tilde{\mu}$.

PROPOSITION 3.3. For $\mu = \mu^*$, the problem (P_{μ}) has a positive solution u_{μ^*} and $\lambda_1(\mu^*) = 1$. Moreover, the solution u_{μ^*} is unique in $H^1(\mathbb{R}^N)$.

THEOREM 3.8. Suppose $3 \le N \le 5$. Assume $f \in H^{-1}(\mathbb{R}^N)$, $f \ge 0$, $f \ne 0$ in \mathbb{R}^N and $||\mu f||_* \le C_N^*$. Then there exists a positive constant $\mu^* > 0$ such that (P_{μ}) possesses at least two positive solutions for $0 < \mu < \mu^*$, a unique solution for $\mu = \mu^*$ and no positive solution if $\mu > \mu^*$.

2. Existence of minimal positive solutions

LEMMA 2.1. The operator $-\Delta + I$ has the maximum principle in $H^1(\mathbb{R}^N)$.

Proof. Let $h \ge 0$ and $-\Delta u + u = h$. Suppose that $u_- \not\equiv 0$, where $u_+ = \max\{u(x), 0\}$ and $u_- = \min\{u(x), 0\}$. then $0 < \int |\nabla u_-|^2 + |u_-|^2) = \int hu_- dx$ which leads a contradiction. This completes the proof. \blacksquare

WAN SE KIM

In order to get the existence of positive solutions for (P_{μ}) , we consider the energy functional I_{μ} of the problem (P_{μ}) defined by

$$I_{\mu}(u) = \frac{1}{2} \int (|\nabla u|^2 + |u|^2) - \frac{1}{2^*} \int (u^+)^{2^*} - \mu \int fu, \text{ for } u \in H^1(\mathbb{R}^N).$$

First, we study the existence of a local minimum for energy functional I_{μ} and its properities. We denote

(2,1)
$$C_N^* = \frac{1}{2} \left(\frac{4}{N+2}\right) \left(\frac{N}{N+2}\right)^{(N-2)/4} S^{N/4}.$$

LEMMA 2.2. Assume $f \in H^{-1}(\mathbb{R}^N)$, $f(x) \ge 0$, $f(x) \ne 0$ and $||\mu f||_* \le C_N^*$, then there exits a positive const $R_0 > 0$ such that $I_{\mu}(u) \ge 0$ for any $u \in \partial B_{R_0} = \{u \in H^1(\mathbb{R}^N) : ||u|| = R_0\}$.

Proof. We consider the function $h(t): [0, +\infty) \to \mathbb{R}^N$ defined by

$$h(t) = \frac{1}{2}t - \frac{1}{2^*}S^{-2^*/2}t^{2^*-1}.$$

Note that $h(0) = 0, 2^* - 1 > 1$ and $h(t) \to -\infty$ as $t \to \infty$. We can show easly there a unique $t_0 > 0$ achieving the maximum of h(t) at t_0 . Since

$$h'(t_0) = \frac{1}{2} - \frac{2^* - 1}{2^*} S^{-2^*/2} t_0^{2^* - 2} = 0,$$

we have

$$t_0 = \left[\frac{2^*}{2(2^*-1)}\right]^{1/(2^*-2)} S^{2^*/2(2^*-2)}.$$

Hence, we have

(2,2)
$$h(t_0) = \frac{1}{2} \left(\frac{4}{N+2}\right) \left(\frac{N}{N+2}\right)^{(N-2)/4} S^{N/4}.$$

Taking $R_0 = t_0$, for all $u \in \partial B_{R_0}$,

(2,3)
$$I_{\mu}(u) = \frac{1}{2} \int (|\nabla u|^{2} + |u|^{2}) - \frac{1}{2^{*}} \int (u^{+})^{2^{*}} - \mu \int fu$$
$$\geq \frac{1}{2} ||u||^{2} - \frac{1}{2^{*}} S^{-2^{*}/2} ||u||^{2^{*}} - ||\mu f||_{*} ||u||$$
$$= t_{0} [h(t_{0}) - ||\mu f||_{*}]$$

From (2,2) and (2,3), we have $I_{\mu}(u)|_{\partial B_{R_0}} \geq 0$.

PROPOSITION 2.3. Assume $f \in H^{-1}(\mathbb{R}^N)$, $f(x) \ge 0$, $f(x) \ne 0$ in \mathbb{R}^N and $||\mu f||_* \le C_N^*$, then problem (P_μ) has at least one positive solution u_μ such that

(2.1)
$$I_{\mu}(u_{\mu}) := c_1 = \inf\{I_{\mu} : u \in \bar{B}_{R_0}\},\$$

where $\bar{B}_{R_0} = \{ u \in H^1(\mathbb{R}^N) : ||u|| \le R_0 \}.$

Proof. By Sobolev inequality, the generalized Hölder and Young's inequality with $\epsilon > 0$, there exists $C_{\epsilon} > 0$, we have

$$I_{\mu}(u) = \frac{1}{2} \int (|\nabla u|^{2} + |u|^{2}) - \frac{1}{2^{*}} \int (u^{+})^{2^{*}} - \mu \int fu$$

$$\geq \frac{1}{2} ||u||^{2} - \frac{1}{2^{*}} S^{-2^{*}/2} ||u||^{2^{*}} - ||\mu f||_{*} ||u||$$

$$\geq \left(\frac{1}{2} - \epsilon\right) ||u||^{2} - \frac{1}{2^{*}} S^{-2^{*}/2} ||u||^{2^{*}} - C_{\epsilon} ||\mu f||_{*}^{2}.$$

Taking $\epsilon < \frac{1}{2}$, then, for $R_0 = t_0$ as in Lemma 2,2, we can find a $C_{R_0} > 0$ small enough such that

(2.2)
$$I_{\mu}(u)|_{\partial B_{R_0}} \ge C_{R_0} \text{ for } ||\mu f||_* \le C_N^*.$$

Since there exists a $\tilde{C}_{R_0} > 0$ such that $|I_{\mu}(u)| \leq \tilde{C}_{R_0}$ for all $u \in \bar{B}_{R_0}$ and \bar{B}_{R_0} is a complete metric space with respect to the metric $d(u, v) = ||u - v||, u, v \in \bar{B}_{R_0}$, by using the Ekeland's variational principle, from (2.2), we can prove that there exists a sequence $\{u_n\} \subset \bar{B}_{R_0}$ and $u_{\mu} \in \bar{B}_{R_0}$ such that

$$(2.3) I_{\mu}(u_n) \to c_1,$$

(2.4)
$$I'_{\mu}(u_n) \to 0,$$

(2.5)
$$u_n \to u_\mu$$
 weakly in $H^1(\mathbb{R}^N)$,

$$u_n \to u_\mu$$
 a.e. in \mathbb{R}^N ,
 $\nabla u_n \to \nabla u_\mu$ a.e. in \mathbb{R}^N

and

$$u_n^{2^*-1} \to u_\mu^{2^*-1}$$
 weakly in $\left(L^{2^*}(\mathbb{R}^N)\right)^*$ as $n \to \infty$.

Therefore, u_{μ} is a weak solution of (P_{μ}) . Hence,

(2.6)
$$\langle I'_{\mu}(u_{\mu}), \varphi \rangle = 0 \quad \forall \varphi \in H^1(\mathbb{R}^N).$$

Moreover, by Lemma 2.1, u_{μ} is positive on \mathbb{R}^N , where I'_{μ} is the Fréchlet derivative of I_{μ} .

Next, we are going to prove (2.1). In fact, by the definition of c_1 , we know that $I_{\mu}(u_{\mu}) \ge c_1$ since $u_{\mu} \in \bar{B}_{R_0}$, that is,

(2.7)
$$I_{\mu}(u_{\mu}) = \frac{1}{2} \int (|\nabla u_{\mu}|^2 + |u_{\mu}|^2) - \frac{1}{2^*} \int |u_{\mu}|^{2^*} - \mu \int f u_{\mu} \ge c_1$$

By (2.6) and (2.7), we have

(2.8)
$$\left(\frac{1}{2} - \frac{1}{2^*}\right) \int (|\nabla u_{\mu}|^2 + |u_{\mu}|^2) - \left(1 - \frac{1}{2^*}\right) \mu \int f u_{\mu} \ge c_1$$

On the other hand, by (2.3) - (2.5) and Fatou's lemma, we get

(2.9)
$$c_{1} = \liminf_{n} \left(\frac{1}{2} - \frac{1}{2^{*}}\right) \int (|\nabla u_{n}|^{2} + |u_{n}|^{2}) - \limsup_{n} (1 - \frac{1}{2^{*}}) \mu \int f u_{n} \\ \geq \left(\frac{1}{2} - \frac{1}{2^{*}}\right) \int (|\nabla u_{\mu}|^{2} + |u_{\mu}|^{2}) - \left(1 - \frac{1}{2^{*}}\right) \mu \int f u_{\mu}.$$

Thus, (2.7) and (2.9) imply (2.1) holds. This completes the proof. \blacksquare

REMARK. (1) $c_1 < 0$, (2) c_1 is bounded below, (3) $||u_{\mu}|| = o(1)$ as $\mu \to 0^+$.

Indeed: (1) For t > 0 and $\varphi > 0$, we have

$$I_{\mu}(t\varphi) = \frac{t^2}{2} \int (|\nabla \varphi|^2 + |\varphi|^2) - \frac{t^{2^*}}{2^*} \int |\varphi|^{2^*} - t\mu \int f\varphi \leq \frac{t^2}{2} ||\varphi||^2 - t\mu \int f\varphi.$$

By taking $t > 0$ sufficiently small, we can see $c_1 < 0$.

(2) By (2.9) with $\varphi = u_{\mu}$, and $c_1 = I_{\mu}(u_{\mu})$, we have

(2.10)
$$c_{1} = \left(\frac{1}{2} - \frac{1}{2^{*}}\right) \int (|\nabla u_{\mu}|^{2} + |u_{\mu}|^{2}) - \left(1 - \frac{1}{2^{*}}\right) \mu \int f u_{\mu}$$
$$\geq \left(\frac{1}{2} - \frac{1}{2^{*}}\right) ||u_{\mu}||^{2} - \left(1 - \frac{1}{2^{*}}\right) ||\mu f||_{*} ||u_{\mu}||$$
$$\geq -\frac{1}{22^{*}} \left[\frac{(2^{*} - 1)^{2}}{2^{*} - 2}\right] ||\mu f||_{*}^{2}$$

by Young's inequality.

(3) Since $c_1 < 0$, from (2.10), we see that $||u_{\mu}|| \to 0$ as $\mu \to 0^+$. Hence, $||u_{\mu}|| = o(1)$ as $\mu \to 0^+$. We also have that $||u_{\mu}||_{\mu}$ is uniformly bounded with respect to μ . We will restate results relating to this remark in Proposition 3.4 more precisely.

PROPOSITION 2.4. Problem (P_{μ}) possesses at least one minimal positive solution of (P_{μ}) .

Proof. Let \mathcal{N} be the Nehari manifold (*cf.* [19]):

$$\mathcal{N} = \left\{ u \in H^1(\mathbb{R}^N) : \int |\nabla u|^2 + |u|^2 = \int |u|^{2^*} + \int \mu f u \right\} \setminus \{0\}.$$

Note that $||\mu f||_* \ll 1$ for μ small enough and for each $u \in H^1(\mathbb{R}^N) \setminus \{0\}$, there exists a unique $t_u > 0$ such that

$$t_u^2 \int |\nabla u|^2 + |u|^2 - t_u^{2^*} \int |u|^{2^*} - t_u \int \mu f u = 0$$

and $I_{\mu}(t_u u) > 0$. Then

$$\mathcal{N} = \left\{ t_u u : u \in H^1(\mathbb{R}^N) \setminus \{0\} \right\}$$

and

$$\mathcal{N} \cong S^{N-1} = \left\{ u \in H^1(\mathbb{R}^N) : ||u|| = 1 \right\}.$$

Hence,

$$H^1(\mathbb{R}^N) = H_1 \cup H_2 \cup \mathcal{N}, \quad H_1 \cap H_2 = \phi \text{ and } 0 \in H_1,$$

where

$$H_1 = \left\{ tu : u \in H^1(\mathbb{R}^N) \setminus \{0\}, t \in [0, t_u) \right\}$$
$$H_2 = \left\{ tu : u \in H^1(\mathbb{R}^N) \setminus \{0\}, t > t_u \right\}.$$

This implies that for t > 0 with $t < t_u, tu \in H_1$.

Here, we need to switch our view point, by associating with v a mapping

 $v: [0,\infty] \to H^1(\mathbb{R}^N)$

defined by

$$[v(t)]x = v(x,t), \quad x \in \mathbb{R}^N, t \in [0,\infty[$$

In other words, we consider v not as a function of x and t together, but rather as a mapping v of t into the space $H^1(\mathbb{R}^N)$ of functions of x.

We have, for any $v_0 \in H_1$, the solution v of the initial value problem

$$\begin{cases} \frac{dv}{dt} - \Delta v + v = v^{2^* - 1} + \mu f(x), \\ v(0) = v_0, \end{cases}$$

converges to u_{μ} as $t \to \infty$,

Indeed, in the proof of Proposition 2.2, we know that $I_{\mu}(v(t))$ is decreasing and $\lim_{t\to\infty} I_{\mu}(v(t)) = I_{\mu}(u_{\mu})$, where $I_{\mu}(u_{\mu})$ is the local minimum. Since

$$\begin{split} I_{\mu}(v(t)) - I_{\mu}(v(s)) &= \int_{s}^{t} \frac{d}{dt} I_{\mu}(v(t)) dt \\ &= \int_{s}^{t} \left\langle \frac{d}{dt} v, \nabla I_{\mu}(v(t)) \right\rangle dt \\ &= -\int_{t}^{s} \left\| \frac{d}{dt} v \right\|^{2} dt, \end{split}$$

we have, $\lim_{s,t\to\infty} \left\| \frac{d}{dt}v \right\|^2 = 0$. Thus, $v' \to 0$ a.e. in \mathbb{R}^N as $t \to \infty$ and hence, $\langle I'_{\mu}(v), \varphi \rangle \to 0$, $\forall \varphi \in C^{\infty}(\mathbb{R}^N)$. Therefore, we have $v \to u_{\mu}$ as $t \to \infty$, since $I_{\mu}(v(t))$ is decreasing and converges to the local minimum $I_{\mu}(u_{\mu})$.

Now, let $v_0 = tu$, where $t \in (0, 1)$ and u is a positive solution. Then $u \in \mathcal{N}$ and $v_0 \in H_1$. Since $v_0 \leq u$ and the solution v converges u_{μ} as $t \to \infty$, by the order preserving principle, $u_{\mu} \leq u$. This completes the proof.

Remark. We see that minimal solution of (P_{μ}) is unique from Proposition 2.3 and Proposition 2.4.

PROPOSITION 2.5. Suppose that $f \in H^{-1}(\mathbb{R}^N)$, $f \ge 0$, $f \ne 0$ and $||\mu f||_* \le C_N^*$. Then there exist $\tilde{\mu} \ge \bar{\mu} > 0$ such that (P_{μ}) possesses a positive solution for $0 < \mu \le \tilde{\mu}$ and no positive solution for $\mu > \tilde{\mu}$.

Proof. By Proposition 2.3, (P_{μ}) has a positive solution if $\mu \leq C_N^*/||f||_*$. Suppose (P_{μ}) has a positive solution \bar{u} for some $\mu = \bar{\mu}$. We show that (P_{μ}) has a positive solution for any $0 < \mu < \bar{\mu}$. For fixed $0 < \mu < \bar{\mu}$, using the Lax-Milgram Theorem, we construct a positive sequence $\{u_n\}$ as following;

Let

$$-\Delta u_1 + u_1 = \mu f$$

and
$$(2, 11)$$

2.11)
$$-\Delta u_n + u_n = u_{n-1}^{2^*-1} + \mu f \text{ for } n \ge 2$$

Then, by the maximum principle, we have $0 < u_n < u_{n+1} < \cdots < \bar{u}$ for $n \ge 1$. And $||u_1|| \le \mu ||f||_*$ and $||u_1||_{2^*} \le S^{-1/2} ||u_1|| \le S^{-1/2} \mu ||f||_*$. Multiplying (2.11) by u_n , we have $||u_n|| \le S^{-2^*/2} ||\bar{u}||^{2^*-1} + \mu ||f||_*$. Therefore, there exists \tilde{u} in $H^1(\mathbb{R}^N)$ such that

$$\begin{split} u_n &\to \tilde{u} \text{ weakly in } H^1(\mathbb{R}^N) \text{ as } n \to \infty, \\ u_n &\to \tilde{u} \text{ a.e. in } \mathbb{R}^N \text{ as } n \to \infty, \\ \nabla u_n &\to \nabla \tilde{u} \text{ a.e. in } \mathbb{R}^N, \\ u_n^{2^*-1} &\to \tilde{u}^{2^*-1} \text{ weakly in } (L^{2^*}(\mathbb{R}^N))^* \text{ as } n \to \infty. \end{split}$$

Thus, \tilde{u} is a positive solution of (P_{μ}) .

Next, let u be a positive solution of (P_{μ}) . Then, for any $\epsilon > 0$, multiplying (P_{μ}) by $\omega_{\epsilon}^{2^*}$, we have

(2.12)
$$-\Delta u \omega_{\epsilon}^{2^*} + u \omega_{\epsilon}^{2^*} = u^{2^* - 1} \omega_{\epsilon}^{2^*} + \mu f(x) \omega_{\epsilon}^{2^*}$$

Since $2^* > 2$, for any M > 0, there exists a constant C > 0 such that

$$u^{2^*-1} \ge Mu - C \quad \forall u > 0.$$

Hence, we have, from (2.12),

$$-\int \Delta u \omega_{\epsilon}^{2^*} + \int u \omega_{\epsilon}^{2^*} \ge \int \left((Mu - C) \omega_{\epsilon}^{2^*} + \mu f(x) \omega_{\epsilon}^{2^*}) \right).$$

By Green's formular, we have

$$\int \Delta u \omega_{\epsilon}^{2^*} = \int u \Delta \omega_{\epsilon}^{2^*}.$$

Thus,

(2.13)
$$\mu \int f(x)\omega_{\epsilon}^{2^{*}} \leq C \int \omega_{\epsilon}^{2^{*}} + \int \left(1 - M - \frac{\Delta\omega_{\epsilon}^{2^{*}}}{w_{\epsilon}^{2^{*}}}\right)\omega_{\epsilon}^{2^{*}}u$$

Since

$$\begin{split} \frac{\Delta w_{\epsilon}^{2^*}}{\omega_{\epsilon}^{2^*}} &= \frac{\Delta (\epsilon + |x|^2)^{-N}}{(\epsilon + |x|^2)^{-N}} = 2N(N+1)(\epsilon + |x|^2)^{-2} \left(\frac{N+2}{N+1}|x|^2 - \frac{N}{N+1}\epsilon\right) \\ &= 2N(N+1)(\epsilon + 0^2)^{-2} \left(\frac{N+2}{N+1}0^2 - \frac{N}{N+1}\epsilon\right) \\ &= -2N^2\epsilon^{-1}, \end{split}$$

we get, from (2.13),

$$\mu \int f(x)\omega_{\epsilon}^{2^*} \le C \int \omega_{\epsilon}^{2^*} + \left(2N^2\epsilon^{-1} + 1 - M\right) \int \omega_{\epsilon}^{2^*}u.$$

If we choose $M = 2N^2\epsilon + 1$, then, by (1.1), we have

$$\mu \leq \frac{C\omega_{\epsilon}^{2^*}}{\int f(x)\omega_{\epsilon}^{2^*}} = \frac{CS^{N/2}}{\int f(x)\omega_{\epsilon}^{2^*}}$$

Hence, there exists $\bar{\mu} > 0$ such that

(2.14)
$$\bar{\mu} \leq \tilde{\mu} \doteq \inf_{\epsilon > 0} \frac{C \int w_{\epsilon}^{2^*}}{\int f(x)\omega_{\epsilon}^{2^*}} = \inf_{\epsilon > 0} \frac{CS^{N/2}}{\int f(x)\omega_{\epsilon}^{2^*}}$$

Therefore, if $\mu > \tilde{\mu}$, then (P_{μ}) has no solution and this completes the proof.

3. Multiplicity of positive solutions

From now on, we assume that $f \in H^{-1}(\mathbb{R}^N)$, $f \ge 0$, $f \not\equiv 0$ in \mathbb{R}^N and f satisfies $||\mu f||_* \ll 1$ for μ small enough.

We set

 $\mu^* := \sup\{\mu \in \mathbb{R}^+ : (P_\mu) \text{ has at least one positive solution in } H^1(\mathbb{R}^N)\}.$ Then, by Proposition 2.5, we have $0 < \bar{\mu} \le \mu^* < \infty$.

Remark. The minimal solution u_{μ} of (P_{μ}) is monotonic increasing with respect to μ . Indeed, suppose $\mu^* > \nu > \mu$. Since

$$-\Delta u_{\nu} + u_{\nu} - u_{\nu}^{2^*-1} - \mu f(x) = (\nu - \mu)f \ge 0,$$

 $u_{\nu} > 0$ is a supersolution of (P_{μ}) . Since $f(x) \ge 0$ and $f(x) \ne 0$, $u \equiv 0$ is a subsolution of (P_{μ}) for any $\mu > 0$. By the standard barrier method, we can obtain a solution u_{μ} of (P_{μ}) such that $0 \le u_{\mu} \le u_{\nu}$ on \mathbb{R}^{N} . We note that 0 is not a solution of (P_{μ}) , $\nu > \mu$ and u_{μ} is a minimal solution of (P_{μ}) since u_{μ} can be derived by an iteration scheme with initial value $u_{(0)} = 0$. Therefore, by the maximal principle, $0 < u_{\mu} < u_{\nu}$ on \mathbb{R}^{N} which completes the proof.

Now, consider the corresponding eigenvalue problem:

(3.1)_{$$\mu$$}
$$\begin{cases} -\Delta \varphi + \varphi = \lambda(\mu)(2^* - 1)u_{\mu}^{2^* - 2}\varphi, \\ \varphi \text{ in } H^1(\mathbb{R}^N). \end{cases}$$

Let λ_1 be the first eigenvalue of $(3.1)_{\mu}$; i.e.,

$$\lambda_1 = \lambda_1(\mu) := \inf\{\int \left(|\nabla \varphi|^2 + |\varphi|^2\right) : \varphi \in H^1(\mathbb{R}^N), (2^* - 1) \int u_{\mu}^{2^* - 2} \varphi^2 dx = 1\}.$$

Then, $0 < \lambda_1 < \infty$ and we can achieve the minimum by some function $\varphi_1 = \varphi_1(\mu) \in H^1(\mathbb{R}^N)$ and $\varphi_1 > 0$ in \mathbb{R}^N if $\mu \in (0, \mu^*)$ (cf. [22]).

We summarize basic properties for $\lambda_1(\mu)$.

LEMMA 3.1. (1) For $\mu \in (0, \mu^*)$, $\lambda_1(\mu) > 1$; (2) If $0 < \mu < \nu \le \mu^*$, then $\lambda_1(\nu) < \lambda_1(\mu)$; (3) $\lambda_1(\mu) \to +\infty$ as $\mu \to 0^+$.

Proof. (1) For given $0 < \mu < \nu \leq \mu^*$, every solution u_{ν} of (P_{μ}) with $\nu \in (\mu, \mu^*)$ is a supersolution of (P_{μ}) . By Taylor expansion, we have

$$-\Delta(u_{\nu} - u_{\mu}) + u(u_{\nu} - u_{\mu}) = u_{\nu}^{2^{*}-1} - u_{\mu}^{2^{*}-1} + (\nu - \mu)f$$
$$> (2^{*} - 1)u_{\mu}^{2^{*}-2}(u_{\nu} - u_{\mu})$$

and moreover, we get

$$\int \nabla (u_{\nu} - u_{\mu}) \nabla \varphi_1 + \int (u_{\nu} - u_{\mu}) \varphi_1 = \int \left(u_{\nu}^{2^* - 1} - u_{\mu}^{2^* - 1} \right) \varphi_1 + \int (\nu - \mu) f \varphi_1$$
$$> (2^* - 1) \int u_{\mu}^{2^* - 2} (u_{\nu} - u_{\mu}) \varphi_1.$$

Therefore, from $(3.1)_{\mu}$, we have

$$\int \nabla (u_{\nu} - u_{\mu}) \nabla \varphi_1 + \int (u_{\nu} - u_{\mu}) \varphi_1 = \lambda_1(\mu) (2^* - 1) \int u_{\mu}^{2^* - 2} (u_{\nu} - u_{\mu}) \varphi_1,$$

which implies $\lambda_1(\mu) > 1$.

(2) Since, for $0 < \mu < \nu \leq \mu^*$, $u_{\mu} < u_{\nu}$ and

$$\lambda_{1}(\mu)(2^{*}-1)\int u_{\mu}^{2^{*}-2}\varphi_{1}(\mu)\varphi_{1}(\nu) = \int \nabla\varphi_{1}(\mu)\nabla\varphi_{1}(\nu) + \int \varphi_{1}(\mu)\varphi_{1}(\nu)$$
$$= \lambda_{1}(\nu)(2^{*}-1)\int u_{\nu}^{2^{*}-2}\varphi_{1}(\nu)\varphi_{1}(\mu),$$

we have $\lambda_1(\mu) > \lambda_1(\nu)$.

(3) First, we show that $||u_{\mu}|| \to 0$ as $\mu \to 0^+$. Multiplying (P_{μ}) by u_{μ} , we have,

$$\int \left(|\nabla u_{\mu}|^{2} + |u_{\mu}|^{2} \right) = \int u_{\mu}^{2^{*}} + \int \mu f u_{\mu}$$

and hence, for $\epsilon > 0$, we have, by Young's inequality with ϵ ,

$$\left(1 - \frac{1}{\lambda_1(2^* - 1)} - \frac{\epsilon}{2}\right) ||u_\mu||^2 \le \frac{\mu^2}{2\epsilon} ||f||_*^2 \quad \text{for } \epsilon > 0.$$

Thus, for $\epsilon > 0$ small, we have $||u_{\mu}|| \leq C_{\epsilon}\mu^2$ for some constant $C_{\epsilon} > 0$, and hence, $||u_{\mu}|| = o(1)$ as $\mu \to 0^+$. Next, Multiplying (P_{μ}) by $\varphi_1(\mu)$, we have, by Hölder's inequality, that

$$\int \left(|\nabla \varphi_1|^2 + |\varphi_1|^2 \right) = \lambda_1 (2^* - 1) \int u_{\mu}^{2^* - 2} \varphi_1^2$$

$$\leq \lambda_1 (2^* - 1) \left(\int u_{\mu}^{2^*} \right)^{(2^* - 2)/2^*} \left(\int \varphi_1^{2^*} \right)^{2/2^*}$$

$$\leq \lambda_1 (2^* - 1) \left(\int u_{\mu}^{2^*} \right)^{(2^* - 2)/2^*} \left(\int |\nabla \varphi_1|^2 \right)$$

$$\leq \lambda_1 (2^* - 1) S^{-(2^* - 2)/2} ||u_{\mu}||^{2^* - 2} ||\varphi_1||^2$$

and thus, $S^{(2^*-2)/2} \leq \lambda_1 \cdot (2^*-1)||u_{\mu}||^{2^*-2}$. Therefore, we have the desired result. This completes the proof. \bullet

LEMMA 3.2. Let u_{μ} be a positive solution of $(1.3)_{\mu}$ for which $\lambda_1(\mu) > 1$. Then, for any $g \in H^1(\mathbb{R}^N)$, the problem:

(3.2)
$$-\Delta w + w = (2^* - 1)u_{\mu}^{2^* - 2}w + g(x), \quad w \in H^1(\mathbb{R}^N)$$

has a solution.

Proof. Consider the functional defined by

$$J(w) = \frac{1}{2} \int \left(|\nabla w|^2 + |w|^2 \right) - \frac{1}{2} (2^* - 1) \int u_{\mu}^{2^* - 2} w^2 - \int gw, \quad w \in H^1(\mathbb{R}^N).$$

From Hölder's inequality and Young's inequality, we have, for any $\epsilon > 0$,

$$J(w) \ge \left(\frac{1}{2} - \frac{1}{2\lambda_1(\mu)}\right) ||w||^2 - \frac{\epsilon}{2} ||w||^2 - \frac{1}{2\epsilon} ||g||_*^2$$
$$= \left(\frac{1}{2} - \frac{1}{2\lambda_1(\mu)} - \frac{\epsilon}{2}\right) ||w||^2 - \frac{1}{2\epsilon} ||g||_*^2$$

and hence, for small $\epsilon > 0$, there exist $C_{1,\epsilon} > 0$ and $C_{2,\epsilon} > 0$ such that

(3.3)
$$J(w) \ge C_{1,\epsilon} ||w||^2 - C_{2,\epsilon} ||g||_*^2.$$

Let $\{w_n\} \subset H^1(\mathbb{R}^N)$ be the minimizing sequence of variational problem

$$d = \inf\{J(w) | w \in H^1(\mathbb{R}^N)\}.$$

From (3.3), we can also deduce that $\{w_n\}$ is bounded in $H^1(\mathbb{R}^N)$. So we may suppose that

$$w_n \to w$$
 weakly in $H^1(\mathbb{R}^N)$ as $n \to \infty$,

$$w_n \to w$$
 a.e. in \mathbb{R}^N as $n \to \infty$

Here, we also note that

$$\nabla w_n \to \nabla w$$
 a.e. in \mathbb{R}^N as $n \to \infty$.

And

$$u_n^{2^*-1} \to \tilde{u}^{2^*-1}$$
 weakly in $(L^{2^*}(\mathbb{R}^N))^*$ as $n \to \infty$

By Fatou's Lemma

$$||w||^2 \le \liminf_{n \to \infty} ||w_n||^2.$$

The weak convergence and the fact that $\int u_{\mu}^{2^*-2} w_n^2 < \infty$ for $n \geq 1$ imply

$$\lim_{n \to \infty} \int gw_n = \int gw, \quad \lim_{n \to \infty} \int u_{\mu}^{2^* - 2} w_n = \int u_{\mu}^{2^* - 2} w$$

and hence,

$$J(w) \le \lim_{n \to \infty} J(w_n) = d.$$

Then, J(w) = d and w is a minimizer of J. Therefore, w is a critical point of J and w is a solution of (3.2). This completes the proof.

PROPOSITION 3.3. For $\mu = \mu^*$, the problem (P_{μ}) has a positive solution u_{μ^*} and $\lambda_1(\mu^*) = 1$. Moreover, the solution u_{μ^*} is unique in $H^1(\mathbb{R}^N)$.

Proof. For $\mu \in (0, \mu^*)$, multiplying (P_{μ}) by u_{μ} , we have, by $(3.1)_{\mu}$,

$$\begin{split} \int \left(|\nabla u_{\mu}|^{2} + |u_{\mu}|^{2} \right) &= \int u_{\mu}^{2^{*}} + \mu \int f u_{\mu} \\ &\leq \frac{1}{\lambda_{1}(\mu)(2^{*}-1)} \int (|\nabla u_{\mu}|^{2} + |u_{\mu}|^{2}) + \mu^{*} ||f||_{*} ||u_{\mu}|| \\ &= \left(\frac{1}{\lambda_{1}(\mu)(2^{*}-1)} + \frac{\epsilon \mu^{*}}{2} \right) ||u_{\mu}||^{2} + \frac{\mu^{*}}{2\epsilon} ||f||_{*}^{2}. \end{split}$$

By taking $\epsilon > 0$ small enough, there exists an constant $C_{\epsilon} > 0$ such that $||u_{\mu}|| \leq C_{\epsilon}$ for all $\mu \in (0, \mu^*)$. Then, there exists u_{μ^*} in $H^1(\mathbb{R}^N)$ such that u_{μ} monotonically increasing to u_{μ^*} as $\mu \to \mu^*$ and $u_{\mu} \to u_{\mu^*}$ weakly in $H^1(\mathbb{R}^N)$ as $\mu \to \mu^*$. Hence, u_{μ^*} is a positive solution of (P_{μ}) with $\mu = \mu^*$. We note that $\lambda_1(\mu)$ is a continuous function of $\mu \in (0, \mu^*]$. Define $F : \mathbb{R}^1 \times H^1(\mathbb{R}^N) \to H^{-1}(\mathbb{R}^N)$ by

$$F(\mu, u) = \Delta u - u + (u^+)^{2^* - 1} + \mu f(x).$$

Since $u_{\mu} \to u_{\mu*}$ weakly as $\mu \to \mu^*$, from Lemma 3.1, $\lambda(\mu^*) \ge 1$. If $\lambda_1(\mu^*) > 1$, then $F_u(\mu^*, u_{\mu^*})\varphi = \Delta \varphi - \varphi + (2^* - 1)u_{\mu^*}^{2^* - 2}\varphi = 0$ has no nontrivial solution. From Lemma 3.2, $F(\mu^*, u_{\mu^*})$ is an isomorphism of $\mathbb{R}^1 \times H^1(\mathbb{R}^N)$ onto $H^{-1}(\mathbb{R}^N)$, and by the implicitly function theorem to F, we find a neighborhood $(\mu^* - \delta, \mu^* + \delta)$ of u^* such that (P_{μ}) possesses a positive solution if $\mu \in (\mu^* - \delta, \mu^* + \delta)$, which contradicts the definition of μ^* . Therefore, $\lambda_1(\mu^*) = 1.$

Suppose U_{μ^*} is a positive solution of (P_{μ^*}) . Then $U_{\mu^*} \ge u_{\mu^*}$ since u_{μ^*} is minimal. Let $w = U_{\mu^*} - u_{\mu^*}$. Then, since $\lambda_1(\mu^*) = 1$, we have

$$-\Delta w - w \ge (2^* - 1)u_{\mu^*}^{2^* - 2}w.$$

Let $\varphi_1 = \varphi_1(\mu^*)$ be the eigenfunction of the problem $(3,1)_{\mu^*}$. Then,

$$(2^* - 1) \int u_{\mu^*}^{2^* - 2} \varphi_1 w = \int \nabla w \nabla \varphi_1 + \int w \varphi_1 \ge (2^* - 1) \int u_{\mu^*}^{2^* - 1} w \varphi_1$$

and hence, $w \equiv 0$. This completes the proof.

PROPOSITION 3.4. The minimal solution u_{μ} of (P_{μ}) increasing continuously to u_{μ^*} as $\mu \to \mu^*$ and uniformly bounded in $H^1(\mathbb{R}^N)$ for all $\mu \in (0, \mu^*]$. Moreover, $||u_{\mu}|| \leq O(\mu^2)$ as $\mu \to 0^+$.

Proof. It suffices to find the uniform bound of u_{μ} . Multiplying (P_{μ}) by u_{μ} , we have

$$\int (|\nabla u_{\mu}|^{2} + |u_{\mu}|^{2}) = \int u_{\mu}^{2^{*}} + \int \mu f u_{\mu}$$

and hence, for $\epsilon > 0$, we have

$$\left(1 - \frac{1}{\lambda_1(2^* - 1)} - \frac{\epsilon}{2}\right) ||u_{\mu}||^2 \le \frac{\mu^2}{2\epsilon} ||f||_*^2 \text{ for } \epsilon > 0.$$

Therefore, for $\epsilon > 0$ small, we have $||u_{\mu}|| \leq C_{\epsilon}\mu^2$ for some constant $C_{\epsilon} > 0$. Next, fix $\tau \in (0, \mu^*]$. If μ increasing to τ , then, by the first Remark in section 3, u_{μ} converges monotonically increasing way up to u_{τ} in $H^1(\mathbb{R}^N)$. If it is not the case, then, by multiplying u_{μ} on (P_{μ}) again, we have

$$||u_{\mu}||^{2} \leq \left\langle u_{\tau}^{2^{*}-1}u_{\mu}\right\rangle + \tau \left\langle f, u_{\mu}\right\rangle$$

and so

$$||u_{\mu}|| \le CS^{-(2^*-1)/2} ||u_{\tau}||^{2^*-1} + \tau ||f||_{*}$$

for some C > 0. Hence, there exists a sequence $\{u_{\mu_j}\}$ in $H^1(\mathbb{R}^N)$ conversing weakly to a solution \tilde{u} of (P_{τ}) . Then, by the maximum principle, $u_{\mu_j} \leq \tilde{u} < u_{\tau}$ which leads a contradiction to the minimality of u_{τ} . This completes the proof. \blacksquare

Next, we are going to find the second solution. In order to get another positive solution of (P_{μ}) , we consider the following problem:

$$(Q_{\mu}) \qquad \begin{cases} -\Delta v + v = (v + u_{\mu})^{2^{*} - 1} - u_{\mu}^{2^{*} - 1} & \text{in } \mathbb{R}^{N} \\ v \in H^{1}(\mathbb{R}^{N}), \ v > 0 & \text{in } \mathbb{R}^{N} \end{cases}$$

and the corresponding variational functional:

$$J_{\mu}(v) = \frac{1}{2} \int |\nabla v|^2 + \frac{1}{2} \int |v|^2 - \frac{1}{2^*} \int [(v^+ + u_{\mu})^{2^*} - u_{\mu}^{2^*} - 2^* u_{\mu}^{2^* - 1} v^+]$$

for $v \in H^1(\mathbb{R}^N)$.

Clearly, we can have another positive solution $U_{\mu} = u_{\mu} + v_{\mu}$ if we show the problem $(Q)_{\mu}$ possesses a positive solution v_{μ} . We look for a critical point of J_{μ} which is a weak solution of (Q_{μ}) by employing standard argument of the Mountain Pass method without the (PS) condition.

We set

(3.5)
$$\psi_{\epsilon}(x) = \varphi(x)w_{\epsilon}(x)$$

where $\varphi(x) \in C_c^{\infty}(\mathbb{R}^N)$ is a cut off function and w_{ϵ} as in (1.1). Because u_{μ} is the critical point of $I_{\mu}(u)$, we can prove that

(3.6)
$$J_{\mu}(v) = K_{\mu}(v) - K_{\mu}(0) = I_{\mu}(v) - I_{\mu}(u_{\mu}),$$

where, for $v \in H^1(\mathbb{R}^N)$,

$$K_{\mu}(v) = \frac{1}{2} \int (|\nabla(v+u_{\mu})|^{2} + (v+u_{\mu})^{2} - \frac{1}{2} \int (v^{+}+u_{\mu}) - \mu \int f(x)(v+u_{\mu}) dv dv$$

By using the following estimations in [4], we know

(3.7)
$$||\nabla\psi_{\epsilon}||_{2}^{2} = S^{N/2} + O(\epsilon^{(N-2)/2}),$$

(3.8)
$$||\psi_{\epsilon}||_{2^*}^{2^*} = S^{N/2} + O(\epsilon^{N^2/(2N-2)}),$$

(3.9)
$$||\psi_{\epsilon}||_{2}^{2} = \begin{cases} C_{1}\epsilon + O(\epsilon^{(N-2)/2}), & \text{for } N \ge 5, \\ C_{1}\epsilon|\ln\epsilon| + O(\epsilon^{(N-2)/2}), & \text{for } N = 4, \\ O(\epsilon^{1/2}), & \text{for } N = 3, \end{cases}$$

where C_1 is a positive constant independent of ϵ .

LEMMA 3.5. Let $v \in H^1(\mathbb{R}^N) \setminus \{0\}, v \ge 0$. (1) For sufficiently small $\epsilon > 0$, there exist $\rho > 0$, $\alpha > 0$ such that $J_{\mu}(v)|_{\partial B_{\rho}} \geq \alpha > 0, and$

(2) For t > 0,

$$J_{\mu}(tv) \to -\infty \ as \ t \to \infty.$$

Proof. (1) Let $v \in H^1(\mathbb{R}^N) \setminus \{0\}, v \ge 0$ Then, for $\epsilon > 0$, by Young's inequality,

$$\begin{aligned} J_{\mu}(v) &= \frac{1}{2} \int \left(|\nabla v|^{2} + |v|^{2} \right) - \int \int_{0}^{v^{+}} [(u_{\mu} + s)^{2^{*}-1} - u_{\mu}^{2^{*}-1}] \\ &\geq \frac{1}{2} \left(1 - \frac{1}{\lambda_{1}} \right) \int \left(|\nabla v|^{2} + |v|^{2} \right) - \\ &- \int \int_{0}^{v^{+}} [(u_{\mu} + s)^{2^{*}-1} - u_{\mu}^{2^{*}-1} - (2^{*}-1)u_{\mu}^{2^{*}-2}s] \\ &\geq \frac{1}{2} \left(1 - \frac{1}{\lambda_{1}} \right) \int \left(|\nabla v|^{2} + |v|^{2} \right) - \int \int_{0}^{v^{+}} [\epsilon u_{\mu}^{2^{*}-2}s + C_{\epsilon}s^{2^{*}-1}] \\ &\geq \frac{1}{2} \left(1 - \frac{1}{\lambda_{1}} \right) ||v||^{2} - \frac{\epsilon}{2} \int u_{\mu}^{2^{*}-2}(v^{+})^{2} - \frac{C_{\epsilon}}{2^{*}+1} \int (v^{+})^{2^{*}} \\ &\geq \frac{1}{2} \left(1 - \frac{1}{\lambda_{1}} - \frac{\epsilon}{2(2^{*}-1)\lambda_{1}} \right) ||v||^{2} - \frac{C_{\epsilon}}{2^{*}}S^{-2^{*}/2} ||v||^{2^{*}} \end{aligned}$$

for some constant $C_{\epsilon} > 0$. Hence, for sufficiently small $\epsilon > 0$, there exist $\rho > 0, \alpha > 0$ such that

$$J_{\mu}(v)|_{\partial B_{\rho}} \ge \alpha > 0,$$

where $B_{\rho} = \{u \in H^1(\mathbb{R}^N) : ||u|| < \rho\}.$ (2) Let $v \in H^1(\mathbb{R}^N)$, $v \ge 0$ and $v \ne 0$, then, for t > 0, we have

$$J_{\mu}(tv) = \frac{t^2}{2} \int (|\nabla v|^2 + |v|^2) - \frac{1}{2^*} \int \left((u_{\mu} + tv)^{2^*} - u_{\mu}^{2^*} - 2^* u_{\mu}^{2^* - 1} tv \right)$$

$$\leq \frac{t^2}{2} \int (|\nabla v|^2 + |v|^2) - \frac{t^{2^*}}{2^*} \int |v|^{2^*}$$

$$\leq \frac{t^2}{2} ||v||^2 - \frac{t^{2^*}}{2^*} ||v||_{2^*}^{2^*}.$$

Therefore, we deduce

$$J_{\mu}(tv) \to -\infty$$

as $t \to \infty.$ This completes the proof. \blacksquare

LEMMA 3.6. Suppose $3 \le N \le 6$. Then there exists some constant $t_{\epsilon} > 0, 0 < k_1 \le t_{\epsilon} \le k_2 < +\infty$ such that $\sup_{t\ge 0} J_{\mu}(t\psi_{\epsilon}) = J_{\mu}(t_{\epsilon}\psi_{\epsilon})$ and

$$J_{\mu}(t_{\epsilon}\psi_{\epsilon}) \leq \frac{1}{N}S^{N/2} - mk_1^{2^*-1} \int_{B_{2\eta}} \psi_{\epsilon}^{2^*-1} + \begin{cases} O(\epsilon), & \text{for } N \geq 5, \\ O(\epsilon|\ln\epsilon|), & \text{for } N = 4, \\ O(\epsilon^{1/2}), & \text{for } N = 3, \end{cases}$$

where $\mu \in (0, \mu^*)$ and $m = \inf\{u_{\mu}(x) | x \in B_{2\eta}\} > 0$. Moreover,

$$J_{\mu}(t_{\epsilon}\psi_{\epsilon}) < \frac{1}{N}S^{N/2}.$$

Proof. By Lemma 3.5 and the fact $3 \le N \le 6$, we can easely show that there exist $t_{\epsilon} > 0$ such that $J_{\mu}(t_{\epsilon}\psi_{\epsilon}) = \sup_{t\ge 0} J_{\mu}(t\psi_{\epsilon})$, we claim that there exist some constants $k_1 > 0$, $k_2 > 0$ such that $0 < k_1 \le t_{\epsilon} \le k_2 < +\infty$. In fact, since

$$J_{\mu}(t_{\epsilon}\psi_{\epsilon}) = \sup_{t\geq 0} J_{\mu}(t\psi_{\epsilon}),$$
$$\frac{dJ_{\mu}(t\psi_{\epsilon})}{dt}|_{t=t_{\epsilon}} = 0, t_{\epsilon} > 0 \text{ and}$$
$$\int |\nabla\psi_{\epsilon}|^{2} + |\psi_{\epsilon}|^{2} = \int [[(t_{\epsilon}\psi_{\epsilon} + u_{\mu})^{2^{*}-1} - u_{\mu}^{2^{*}-1})]/t_{\epsilon}]\psi_{\epsilon}.$$

Therefore, we have

(3.10)
$$\frac{||\nabla\psi_{\epsilon}||_{2}^{2} + ||\psi_{\epsilon}||_{2}^{2}}{||\psi_{\epsilon}||_{2^{*}}^{2^{*}}} - t_{\epsilon}^{2^{*}-2} = \frac{\int [[(t_{\epsilon}\psi_{\epsilon} + u_{\mu})^{2^{*}-1} - u_{\mu}^{2^{*}-1} - (t_{\epsilon}\psi_{\epsilon})^{2^{*}-1}/t_{\epsilon}]\psi_{\epsilon}]}{||\psi_{\epsilon}||_{2^{*}}^{2^{*}}} > 0$$

From (3.7) - (3.9), we have

$$t_{\epsilon}^{2^*-2} \le \frac{||\nabla \psi_{\epsilon}||_2^2 + ||\psi_{\epsilon}||_2}{||\psi_{\epsilon}||_{2^*}^2} \le c_2 < +\infty$$

for ϵ small enough, and thus $t_{\epsilon} \leq k_2$ for some $k_2 > 0$.

On the other hand, it is easy to check that

$$\lim_{u \to \infty} \frac{(u+u_{\mu})^{2^{*}-1} - u_{\mu}^{2^{*}-1} - u^{2^{*}-1}}{u^{2^{*}-1}} = 0.$$

Put $u = t_{\epsilon}\psi_{\epsilon}$. Then for any $\delta > 0$, there exists a constant $C_{\delta} > 0$ such that

$$\begin{split} &\int \frac{(t_{\epsilon}\psi_{\epsilon} + u_{\mu})^{2^{*}-1} - u_{\mu}^{2^{*}-1} - (t_{\epsilon}\psi_{\epsilon})^{2^{*}-1}}{||t_{\epsilon}\psi_{\epsilon}||_{2^{*}}^{2^{*}}} \\ &= [||\psi_{\epsilon}||_{2^{*}}^{2^{*}}]^{-1} \int \frac{[(t_{\epsilon}\psi_{\epsilon} + u_{\mu})^{2^{*}-1} - u_{\mu}^{2^{*}-1} - (t_{\epsilon}\psi_{\epsilon})^{2^{*}-1}]\psi_{\epsilon}}{t_{\epsilon}} \\ &= [||\psi_{\epsilon}||_{2^{*}}^{2^{*}}]^{-1} \int \frac{(\delta t_{\epsilon}^{2^{*}-1}\psi_{\epsilon}^{2^{*}-1} + t_{\epsilon}C_{\delta}\psi_{\epsilon})\psi_{\epsilon}}{t_{\epsilon}} \\ &\leq [||\psi_{\epsilon}||_{2^{*}}^{2^{*}}]^{-1}[\delta t_{\epsilon}^{2^{*}-2}||\psi_{\epsilon}||_{2^{*}}^{2^{*}} + C_{\delta}||\psi_{\epsilon}||_{2}^{2}] \\ &= \delta t_{\epsilon}^{2^{*}-2} + O(\epsilon^{1/2}). \end{split}$$

Again, by (3.7) - (3.10),

$$1 - t_{\epsilon}^{2^* - 2} \leq ||\psi_{\epsilon}||_{2^*}^{2^*} \int [[(t_{\epsilon}\psi_{\epsilon}) + u_{\mu})^{2^* - 1} - u_{\mu}^{2^* - 1} - (t_{\epsilon}\psi_{\epsilon})^{2^* - 1}]/t_{\epsilon}]\psi_{\epsilon}$$
$$\leq \delta t_{\epsilon}^{2^* - 2} + O(\epsilon^{1/2}),$$

and thus, we have

$$1 - t_{\epsilon}^{2^* - 2} - \delta t_{\epsilon}^{2^* - 2} + O(\epsilon^{1/2}) \le 0$$

Choosing δ , ϵ small enough, we find a constant $k_1 > 0$ such that $t_{\epsilon} \ge k_1$. Moreover, from the definition of J_{μ} and the inequality:

$$(v+u_{\mu})^{p}-u_{\mu}^{p}-v^{p} \ge pu_{\mu}v^{p-1}$$
 for every $v \ge 0, \ p>2,$

we have

$$J_{\mu}(v) = \frac{1}{2} \int (|\nabla v|^2 + v^2) - \frac{1}{2} \int ((v^+ + u_{\mu})^{2^*} - u_{\mu}^{2^*} - 2^* u_{\mu}^{2^* - 1} v)$$

$$\leq \frac{1}{2} \int (|\nabla v|^2 + v^2) - \frac{1}{2^*} \int v^{2^*} - 2^* u_{\mu} v^{2^* - 1}.$$

Hence,

$$J_{\mu}(t_{\epsilon}\psi_{\epsilon}) = \frac{t_{\epsilon}^{2}}{2} \int (|\nabla\psi_{\epsilon}|^{2} + |\psi_{\epsilon}|^{2}) - \frac{1}{2^{*}} \int (t_{\epsilon}\psi_{\epsilon})^{2^{*}} + 2^{*}u_{\mu}(t\psi_{\epsilon})^{2^{*}-2}$$
$$= \frac{t_{\epsilon}^{2}}{2} (||\nabla\psi_{\epsilon}||_{2}^{2} + ||\psi_{\epsilon}||_{2}^{2}) - \frac{t_{\epsilon}^{2^{*}}}{2^{*}} ||\psi_{\epsilon}||_{2}^{2^{*}} - 2^{*}t^{2^{*}-2} \int u_{\mu}\psi_{\epsilon}^{2^{*}-2}$$
$$\leq \left(\frac{t_{\epsilon}^{2}}{2} - \frac{t_{\epsilon}^{2^{*}}}{2^{*}}\right) ||\nabla\psi_{\epsilon}||_{2}^{2} + \frac{t_{\epsilon}^{2}}{2} ||\psi_{\epsilon}||_{2}^{2} - 2^{*}t^{2^{*}-2} \int_{B_{2\eta}} u_{\mu}\psi_{\epsilon}^{2^{*}-2}.$$

From (3.7) - (3.9), we have

$$\begin{aligned} J_{\mu}(t\psi_{\epsilon}) &\leq \frac{1}{N} S^{N/2} + O(\epsilon^{(N-2)/2}) + \begin{cases} K_{1}\epsilon + O(\epsilon^{(N-2)/2}) & \text{for } N \geq 5, \\ K_{1}\epsilon |\ln \epsilon| + O(\epsilon^{(N-2)/2}) & \text{for } N = 4, \\ O(\epsilon^{1/2}) & \text{for } N = 3, \end{cases} \\ &- 2^{*}t^{2^{*}-1} \int_{B_{2\eta}} u_{\mu}\psi_{\epsilon}^{2^{*}-1} \\ &\leq \frac{1}{N} S^{N/2} - 2^{*}t^{2^{*}-1} \int_{B_{2\eta}} u_{\mu}\psi_{\epsilon}^{2^{*}-1} \\ &+ \begin{cases} O(\epsilon), & \text{for } N \geq 5, \\ O(\epsilon |\ln \epsilon|), & \text{for } N = 4, \\ O(\epsilon^{1/2}), & \text{for } N = 3. \end{cases} \end{aligned}$$

And, we have: for N = 5,

$$\begin{split} &\lim_{\epsilon \to 0^+} \epsilon^{-1} \int_{B_{2\eta}} \psi_{\epsilon}^{2^* - 1} \\ &\ge \lim_{\epsilon \to 0^+} \epsilon^{-1} \int_{B_{\eta}} \psi_{\epsilon}^{2^* - 1} \\ &= \lim_{\epsilon \to 0^+} (N(N-2))^{(N+2)/4} \alpha(N) \epsilon^{-1} \int_0^{\eta \epsilon^{-1/2}} \left(\frac{\epsilon^{-(N-2)/4}}{(1+z^2)^{(N-2)/2}} \right)^{2^* - 1} \epsilon^{N/2} \xi^{N-1} dz \\ &= \lim_{\epsilon \to 0^+} \epsilon^{(N-6)/4} \int_0^{\eta \epsilon^{-1/2}} \alpha(N) \left(\frac{1}{1+z^2} \right)^{(N+2)/2} \xi^{N-1} dz \to \infty, \end{split}$$

where $\xi = r\epsilon^{-1/2}$, r = |x| and $\alpha(N)$ denote the area of unit sphere, and for N = 4,

$$\begin{split} &\lim_{\epsilon \to 0^+} \epsilon^{-1} |\ln^{\epsilon}|^{-1} \int_{B_{2\eta}} \psi_{\epsilon}^{2^* - 1} \\ &\geq \lim_{\epsilon \to 0^+} \epsilon^{-1} |\ln^{\epsilon}|^{-1} \int_{B_{\eta}} \psi_{\epsilon}^{2^* - 1} \\ &= \lim_{\epsilon \to 0^+} (N(N-2))^{(N+2)/4} \rho(N) \epsilon^{-1} |\ln^{\epsilon}|^{-1} \int_{0}^{\eta |\ln^{\epsilon}|} \left(\frac{\epsilon^{-(N-2)/4}}{(1+z^2)^{(N-2)/2}}\right)^{2^* - 1} \epsilon^{N/2} \xi^{N-1} dz \\ &= \lim_{\epsilon \to 0^+} \epsilon^{(N-6)/4} |\ln^{\epsilon}|^N \int_{0}^{\eta |\ln^{\epsilon}|} \rho(N) \left(\frac{1}{1+z^2}\right)^{(N+2)/2} r^{N-1} dz \to \infty, \end{split}$$

where $\xi = r |\ln^{\epsilon}|, r = |x|$ and $\rho(N)$ denote the area of unit sphere, and for N = 3,

$$\begin{split} &\lim_{\epsilon \to 0^+} \epsilon^{-1} \epsilon^{1/2} \int_{B_{2\eta}} \psi_{\epsilon}^{2^* - 1} \\ &\geq \lim_{\epsilon \to 0^+} \epsilon^{-1/2} \int_{B_{\eta}} \psi_{\epsilon}^{2^* - 1} \\ &= \lim_{\epsilon \to 0^+} (N(N-2))^{(N+2)/4} \alpha(N) \epsilon^{-1/2} \int_0^{\eta \epsilon^{-1/2}} \left(\frac{\epsilon^{-(N-2)/4}}{(1+z^2)^{(N-2)/2}} \right)^{2^* - 1} \epsilon^{N/2} \xi^{N-1} dz \\ &= \lim_{\epsilon \to 0^+} \epsilon^{(N-4)/4} \int_0^{\eta \epsilon^{-1/2}} \alpha(N) \left(\frac{1}{1+z^2} \right)^{(N+2)/2} \xi^{N-1} dz \to \infty, \end{split}$$

where $\xi = r\epsilon^{-1/2}, r = |x|$ and $\alpha(N)$ denote the area of unit sphere. Consequently, we deduce

$$J_{\mu}(t_{\epsilon}\psi_{\epsilon}) < \frac{1}{N}S^{N/2}.$$

This completes the proof.

THEOREM 3.7. Suppose $3 \le N \le 5$. Then the problem (P_{μ}) possesses at least two positive solutions for all $\mu \in (0, \mu^*)$.

Proof. Let

$$\Gamma = \{\gamma \in \mathcal{C}([0,1], H^1); \gamma(0) = 0, \ \gamma(1) = t_{\epsilon} \psi_{\epsilon}\}$$

and

$$c_{\mu} = \inf_{\gamma \in \Gamma} \max_{s \in [0,1]} J_{\mu}(\gamma(s)).$$

Then, we have, from Lemma 3.6,

(3.11)
$$0 < \alpha \le c_{\mu} \le \sup_{t \ge 0} J_{\mu}(t_{\epsilon}\psi_{\epsilon}) < \frac{1}{N}S^{N/2}.$$

We now applying the Mountain Pass Theorem without Palais-Smale condition in [4] to get a subsequence $\{v_n\} \subset H^1(\mathbb{R}^N)$ such that

(3.12)
$$J_{\mu}(v_n) \to c_{\mu}, \quad J'_{\mu}(v_n) \to 0 \quad \text{in} \quad H^{-1}(\mathbb{R}^N).$$

Since

$$1 + c_{\mu} + ||v_n|| + ||u_{\mu}|| \ge 1 + c_{\mu} + ||v_n + u_{\mu}||$$

$$\geq J_{\mu}(v_{n}) - \frac{1}{2^{*}} J_{\mu}'(v_{n})(v_{n}^{+} + u_{\mu})$$

$$\geq \left(\frac{1}{2} - \frac{1}{2^{*}}\right) ||v_{n}||^{2} - \frac{2}{2^{*}} ||v_{n}|| ||u_{\mu}|| - \left(1 - \frac{1}{2^{*}}\right) ||u_{\mu}||_{2^{*}}^{2^{*}},$$

we see that $\{v_n\}$ is bounded in $H^1(\mathbb{R}^N)$. Hence, there exists a subsequence $\{v_n\}$ such that

 $v_n \to v_\mu$ weakly in $H^1(\mathbb{R}^N)$,

$$v_n \to v_\mu$$
 a.e. in \mathbb{R}^N ,
 $\nabla v_n \to \nabla v_\mu$ a.e. in \mathbb{R}^N ,

and

$$(v_n + u_\mu)^{2^* - 1} - u_\mu^{2^* - 1} \to (v^+ + u_\mu)^{2^* - 1} - u_\mu^{2^* - 1}$$
 weakly in $(L^{2^*}(\mathbb{R}^N))^*$.

Then v_{μ} is a weak solution of $-\Delta v + v = (v^+ + u_{\mu})^{2^*-1} - u_{\mu}^{2^*-1}$. Using the maximal principle, we get $v_{\mu} \ge 0$ in \mathbb{R}^N . Set $u_n = v_n + u_{\mu}$, $u = v_{\mu} + u_{\mu}$. Then

$$\begin{split} u_n &\to u \text{ weakly in } H^1(\mathbb{R}^N), \\ u_n &\to u \text{ a.e. in } \mathbb{R}^N, \\ \nabla u_n &\to \nabla u \text{ a.e. in } \mathbb{R}^N. \end{split}$$

From (3.6),

 $J_{\mu}(v_n) = K_{\mu}(v_n) - K_{\mu}(0) = I_{\mu}(v_n) - I_{\mu}(u_{\mu}) \to c_{\mu} \text{ as } n \to \infty$ (3.13)

and u is a solution of

(3.14)
$$-\Delta u + u = u^{2^*} + \mu f(x)$$

Now, we are going to show that $u \neq u_{\mu}$. In fact, if $u \equiv u_{\mu}$, i.e., $v_{\mu} \equiv 0$, then $u_n \not\rightarrow u$ strongly in $H^1(\mathbb{R}^N)$, since $J_\mu(0) = 0 < u_\mu$. Let $c_1 = c_\mu + I_\mu(u_\mu)$. By the Brezis-Lieb Lemma(cf. [3]) we have

(3.15)
$$\begin{cases} ||u_n||^2 = ||u_\mu||^2 + ||v_n||^2 + o(1), \\ |u_\mu^+|^{2^*} = |u_\mu|^{2^*} + |v_\mu^+|^{2^*} + o(1), \\ \int fu_n = \int fu_n + o(1) \text{ as } n \to \infty. \end{cases}$$

By (3.13), (3.14), we have

$$\int |\nabla u_{\mu}|^{2} + u_{\mu}^{2} = \int (u_{\mu}^{+})^{2^{*}} + \mu \int f(x)u_{\mu} + o(1),$$
$$\int |\nabla u_{\mu}|^{2} + u_{\mu}^{2} = \int (u_{\mu}^{+})^{2^{*}} + \mu \int f(x)u_{\mu}.$$

Hence,

$$\int |\nabla v_n|^2 + v_n^2 = \int (v_n^+)^{2^*} + o(1),$$

by substracting the two identities above and by (3.15). Using (3.13), (3.14), (3.15) and (3.16), we have that, as $n \to \infty$

$$c_{1} = c_{\mu} + I_{\mu}(u_{\mu})$$

= $J_{\mu}(v_{n}) + I_{\mu}(u_{\mu}) + o(1)$
= $I_{\mu}(u_{n}) + o(1)$
= $I_{\mu}(u_{\mu}) + \frac{1}{2} \int |\nabla v_{\mu}|^{2} + v_{\mu}^{2} - \frac{1}{2^{*}} \int v_{n}^{2^{*}} + o(1)$
= $I_{\mu}(u_{\mu}) + \left(\frac{1}{2} - \frac{1}{2^{*}}\right) \int (v_{n})^{2} + o(1)$
= $I_{\mu}(u_{\mu}) + \frac{1}{N} \int (v_{n})^{2^{*}} + o(1).$

By Sobolev inequality (cf. [4], [7], [6]):

$$S||v_n||_{2^*}^2 \le ||v_n||^2 = ||v_n||_{2^*}^{2^*} + o(1),$$

we have $||w_n||_{2^*}^{2^*} \ge S^{N/2}$. Thus,

$$c_1 = c_\mu + I_\mu(u_\mu) \ge I_\mu(u_\mu) + \frac{1}{N} S^{N/2}(cf.).$$

This leads a contradiction to (3.11). Therefore, we have $v_{\mu} > 0$. This completes the proof.

Consequently, we have

THEOREM 3.8. Suppose $3 \le N \le 5$. Assume $f \in H^{-1}(\mathbb{R}^N)$, $f \ge 0$, $f \ne 0$ in \mathbb{R}^N and $||\mu f||_* \le C_N^*$. Then there exists a positive constant $\mu^* > 0$ such that (P_{μ}) possesses at least two positive solutions for $0 < \mu < \mu^*$, a unique solution for $\mu = \mu^*$ and no positive solution if $\mu > \mu^*$.

References

- [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funt. Anal., 14 (1973), 349-381.
- [2] S. Bae, Positive global solutions of inhomogenuous semilinear elliptic equations with critical sobolev exponent, Preprint.
- [3] H. Brezis and E. Lieb, A relation between pointwise convergence of functionals and convergence of functions,, Proc. Amer. Soc., 88 (1983), 486-490.
- [4] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437-427.
- [5] D.-M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equations on ℝ^N, Nonlinear Anal. T.M.A., 15(1990), 1048-1052.
- [6] Y. Deng and Li. Y, Existence and bifurcation of positive solutions for a semilinear elliptic equation with critical exponent, J. Diff. Equa., 130 (1996), 179-200.
- [7] Y. Deng and Li. Y, Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2(1997), 361-382.
- W.-Y. Ding and W.-M. Ni On the existence of positive solutions for a semilinear elliptic equation, Archs Ration Mech. Analysis, 91(1986), 283-307.
- [9] L. Ekeland, Convex minimization problem, Bull. Amer. Math. Soc., (NS)1 (1976), 443-474.
- [10] L. Caffarely, G. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math 42(1986), 271-1191.
- [11] N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equations, Nonlinear Analysis. T.M.A., 29(8) (1997), 889-901.
- [12] N. Hirano, Multiple existence of solutions for a nonhomogeneous elliptic problems on R^N, J. Math. Anal. Appl., 336 (2007), 506-522.
- [13] N. Hirano and W. S. Kim, Multiple existence of solutions for a nonhomogeneous elliptic problem with critical exponent on \mathbb{R}^N , J. Diff. Equa, **249**,(2010), 1799-1816.

- [14] N. Hirano and W. S. Kim, Multiple existence of solutions for a nonhomogeneous elliptic problem on \mathbb{R}^N , Nonlinear Analysis. T.M.A., **74**,(2011), 4369-4378.
- [15] M. K. Kwong, Uniqueness of positive solution of $\Delta u u + u^p = 0$ in \mathbb{R}^N , Arch. Retional Mech. Anal. 105(3), (1989), 243-266.
- [16] P.L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. part 1, Ann. Inst. H. Poincaré Analyse non Linéaire, 1(2)(1984), 109-145,.
- [17] P.L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. part 2, Ann. Inst. H. Poincaré Analyse non Linéaire, 1(4)(1984), 223-283,.
- [18] W.A. Strauss, Existence of solatary waves in higher dimensions, Communs. Math. Phys., 55(1977), 149-162.
- [19] M. Willem, Minimax theorems, Birkhauser. Boston, Basel, Berlin. (1996).
- [20] X.-P. Zhu, Multiple entire solutions of a semilinear elliptic equation, Nonlinear analysis T.M.A., 12(11) (1988),1297-1316.
- [21] X.-P. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Diff. Equa, 92 (1991) 163-178.
- [22] X.-P. Zhu, and H.-S. Zhu, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domain, Proc. Roy. Soc. Edinburgh, 115 A (1990) 301-318.

WAN SE KIM

DEPARTMENT OF MATHEMATICS, RESEARCH INSTITUTE FOR NATURAL SCIENCES, HANYANG UNIVERSITY, SEOUL 133-791, KOREA

E-mail address: wanskim@hanyang.ac.kr