DOI QR코드

DOI QR Code

SOME REMARKS ON NON-SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES OVER A FIELD OF ODD CHARACTERISTIC

  • 투고 : 2014.05.04
  • 심사 : 2014.05.16
  • 발행 : 2014.05.31

초록

In this paper, we present a simple proof of Corollary 3.3 in [5] using the fact that for a K3 surface of finite height over a field of odd characteristic, the height is a multiple of the non-symplectic order. Also we prove for a non-symplectic CM K3 surface defined over a number field the Frobenius invariant of the reduction over a finite field is determined by the congruence class of residue characteristic modulo the non-symplectic order of the K3 surface.

키워드

참고문헌

  1. Artin, M. and Mazur,B. Formal groups arising from algebraic varieties, Ann. Sci. Ecole Norm. Sup (4) 10,1977,87-131. https://doi.org/10.24033/asens.1322
  2. Francois, C. The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194, 2013, 119-145. https://doi.org/10.1007/s00222-012-0443-y
  3. Dolgachev, I. and Keum, J. Finite group of symplectic automorphisms of K3 surfaces in positive characteristic, Ann. of Math. 169, 2009, 269-313. https://doi.org/10.4007/annals.2009.169.269
  4. Illusie, L. Report on crystalline cohomology, Algebraic Geometry, Proc. Sympos. Pure Math 29, 1975, 459-478.
  5. Jang, J. The representation of the automorphism groups on the transcendental cycles and the Frobenius invariants of K3 surface, arxiv:1312.7634.
  6. Madapusi Pera, K. The Tate conjecture for K3 surfaces in odd characterisitc, arXiv:1301.6326.
  7. Nukulin, V.V. Finite gropus of automorphisms of Kahlerian K3 surfaces, Trudy Moskov. Mat. Obshch 38, 1979, 75-137.
  8. Nygaard, N.O. Higher De Rham-Witt complexes of supersingular K3 surfaces, Compositio Math. 42, 1981, 245-271.
  9. Nygaard, N.O. and Ogus, A. Tate conjecture for K3 surfaces of finite height, Ann. of Math.(2) 122, 1985, 461-507. https://doi.org/10.2307/1971327
  10. Ogus, A. A crystalline Torelli theorem for supersingular K3 surfaces, Prog. Math. 36, 1983, 361-394.
  11. Rizov, J. Kuga-Satake abelian varieties of K3 surfaces in mixed characteristic, J.reine angew. Math. 648, 2010, 13-67.
  12. Rudakov, A.N. and Shafarevich,I.R. Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii vol. 18, 1981, 115-207.

피인용 문헌

  1. On the Supersingular Reduction of K3 Surfaces with Complex Multiplication vol.2020, pp.20, 2020, https://doi.org/10.1093/imrn/rny210