DOI QR코드

DOI QR Code

A Hole Self-Organization Real-Time Routing Protocol for Irregular Wireless Sensor Networks

비정형적인 무선 센서 네트워크에서 음영지역 자가 구성 실시간 라우팅 프로토콜

  • Received : 2014.02.20
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

The real-time data dissemination schemes exploit the spatiotemporal commuication approach which forwards data at the delivery speed calculated with the desired time deadline and the end-to-end distance in wireless sensor networks (WSNs). In practical environments, however, the performance of the real-time data dissemination might be degraded by additional and inevitable delay due to some holes. Namely, the holes lengthen the data delivery path and the spatiotemporal approach could not estimate a distance of the data delivery path. To deal with this, we propose A Hole Self-Organization Real-time Routing Protocol for Irregular Wireless Sensor Networks. In proposed protocol, nodes around holes could detect them at deploying phase. A hole is represented as a circle with center point and radius. This hole information is processed and provided as a form of location service. When a source queries a destination location, location provider replies certain points for avoiding holes as well as destination location. Thus, the source could set desired speed toward the destination via the points. Performance evaluation shows that provides better real-time service in practical environments.

무선 센서 네트워크의 실시간성은 단대단 거리를 기반으로 각 노드에서 유지해야할 최소 전송 속도를 정의하고 이를 만족하는 노드들을 매 홉마다 선택함으로써 일정 시간 내에 목적지까지 도달하는 것을 보장하는 것이다. 따라서 실시간성은 소스와 싱크사이의 거리에 매우 의존적이다. 하지만 전달과정 중 음영지역을 만난 경우에 이를 우회하기 위한 탐지 시간과 전송 노드에서는 예상할 수 없는 음영지역의 크기 때문에 이동 거리를 예상할 수 없게 된다. 따라서 노드는 실시간성을 위해 유지해야할 최소한의 전송속도를 정의할 수 없게 되고 실시간 전송에 문제가 발생한다. 따라서 이 문제를 해결하고자 음영지역 주변 노드 스스로 음영지역을 탐지하고, 이를 이용하여 소스는 음영지역을 탐지하지 않고 우회지점을 통해 고정된 거리를 우회함으로써 전송 중 음영지역으로 인한 문제를 해결하는 방안을 제안한다. 제안된 방안은 음영지역 경계노드들이 스스로 음영지역 근처에 위치하고 있는 것을 인지하고 상호간에 통신을 통하여 음영지역을 모델링함으로써, 데이터를 전송할 소스는 해당 음영지역 정보를 탐지하지 않고 우회하는 방법을 사용한다. 시뮬레이션은 기존방안에 비해 더 나은 실시간성을 가지는 것을 보인다.

Keywords

References

  1. I. F. Akyildiz, et al., "A survey on sensor networks," IEEE Commun., vol. 40, no. 8, pp. 102-114, Aug. 2002.
  2. E. B. Hamida and G. Chelius, "Strategies for data dissemination to mobile sinks in wireless sensor networks," IEEE Wirel. Commun., vol. 15, no. 6, pp. 31-37, Dec. 2008. https://doi.org/10.1109/MWC.2008.4749745
  3. J. Hightower and G. Borriello, "Location systems for ubiquitous computing," IEEE Comput., vol. 34, no. 8, pp. 57-66, Aug. 2001.
  4. N. Bulusu, J. Heidemann, and D. Estrin, "GPS-less low cost outdoor localization for very small devices," IEEE Personal Commun. Mag., vol. 7, no. 5, pp. 28-34, Oct. 2000.
  5. T. He, J. A. Stankovic, T. F. Abdelzaher, and C. Lu, "A spatiotemporal communication protocol for wireless sensor networks," IEEE Trans. Parallel and Distributed Syst., vol. 16, no. 10, pp. 995-1006, Oct. 2005. https://doi.org/10.1109/TPDS.2005.116
  6. E. Felemban, C. Lee, and E. Ekici, "MMSPEED: Multipath multi SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks," IEEE Trans. Mobile Comput., vol. 5, no. 6, pp. 738-754, Jun. 2006. https://doi.org/10.1109/TMC.2006.79
  7. S. Park, E. Lee, J. Jung, and S.-H. Kim, "Real-time routing based on on-demand multi-hop lookahead in wireless sensor networks," IEICE Trans., vol. 94-B, no. 2 pp. 569-572, Jan. 2011.
  8. Q. Fang, J. Gao, and L. J. Guibas, "Locating and bypassing routing holes in sensor networks," in Proc. IEEE INFOCOM, vol. 4, pp. 2458-2468, Mar. 2004.
  9. B. Karp and H. Kung, "GPSR: Greedy perimeter stateless routing for wireless networks," in Proc. ACM/IEEE MobiCom, pp. 243-254. Boston, Massachusetts, USA, Aug. 2000.
  10. S. Kim, H. Park, J. Lee, and S.-H. Kim, "Energy-efficient grid-based hole-detouring scheme in wireless sensor networks," J. KICS, vol. 37, no. 4, pp. 227-235, Apr. 2012.
  11. D. S. J. De Couto and R. Morris, "Location proxies and intermediate node forwarding for practical geographic forwarding," Tech. Rep. MITLCS-TR-824, MIT Laboratory for Comput. Sci., Jun. 2001.
  12. Y. Tian, F. Yu, Y. Choi, S. Park, E. Lee, M. Jin, and S. H. Kim, "Energy-efficient data dissemination protocol for detouring routing holes in wireless sensor networks," J. KISS, vol. 14, no. 3, pp. 321-325, May 2008.
  13. E. Lee, S. Park, J. Lee, and S.-H. Kim, "Sink location dissemination scheme in geographic routing for wireless sensor networks," J. KICS, vol. 34, no. 9, pp. 847-856, Sept. 2009.
  14. H. Park, J. Lee, S. Oh, Y. Yim, and S.-H. Kim, "Sink location service via circle path for geographic routing in wireless sensor networks," J. KICS, vol. 35, no. 6, pp. 585-593, Jun. 2010.
  15. S. P. Fekete, A. Kroeller, D. Pfisteres, S. Fischer, and C. Buschmann, "Neighborhood based topology recognition in sensor networks," In Algorithmic Aspects of Wirel. Sensor Netw., pp. 123-136. 2004.
  16. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland: Elsevier, 1976.
  17. Scalable Network Technologies, Qualnet, [online]. Available: http://www.scalable-networks.com
  18. J. Hill and D. Culler, "Mica: A wireless platform for deeply embedded networks," IEEE Micro, vol. 22, no. 6, pp. 12-24, Nov./ Dec. 2002.