DOI QR코드

DOI QR Code

Photonic Microwave Notch Filter with Negative Coefficient Using Reflective Semiconductor Optical Amplifier

반사형 반도체 광 증폭기를 이용한 음계수를 가지는 광 마이크로파 노치 필터

  • Received : 2014.02.03
  • Accepted : 2014.04.17
  • Published : 2014.05.31

Abstract

We propose and experimentally demonstrate a photonic microwave notch filter with a negative coefficient. The negative coefficient is obtained by using cross gain modulation (XGM) in a reflective semiconductor optical amplifier (RSOA). When the RSOA is operated in saturated region, the signal carried on the pump wavelength is inversely copied to the probe wavelength by the XGM effect, showing a negative coefficient. Time delay between pump signal and probe signal is provided by single mode fiber (SMF) with wavelength dependent time delay. The proposed microwave notch filter shows notch dips of more than 35.1 dB and free spectral range (FSR) of about 380.6 MHz.

본 논문에서는 반사형 반도체 광 증폭기 (RSOA)를 이용하여 음계수를 가지는 광 마이크로파 노치 필터를 제안하고 구현하였다. 제안된 마이크로파 노치 필터의 음계수는 RSOA의 상호 이득 변조 (XGM) 현상을 통하여 얻어진다. RSOA가 이득 포화 영역에서 동작할 때 변조된 펌프 광과 연속파를 가지는 프로브 광을 RSOA 내에 주입하게 되면, XGM 현상으로 인하여 프로브 광은 펌프 신호의 반전된 형태의 신호로 변조된다. 이러한 두 신호들은 파장 의존적 시간 지연 특성을 갖는 단일 모드 광섬유 (SMF)에 의하여 프로브 신호와 펌프 신호 사이에 시간지연이 발생한다. 제안된 마이크로파 노치 필터는 35.1 dB 이상의 notch dips과 약 380.6 MHz의 free spectral range (FSR)을 가진다.

Keywords

References

  1. J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol., vol. 24, no. 1, pp. 201-229, Jan. 2006. https://doi.org/10.1109/JLT.2005.860478
  2. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol., vol. 23, no. 2, pp. 702-723, Feb. 2005. https://doi.org/10.1109/JLT.2004.838819
  3. Y. Choi, T. Madhan, Y. Kim, C. Oh, and C.-S. Park, "A photonic microwave notch filter based on self-injection locked reflective semiconductor optical amplifier," Photon. Conf., pp. 257-258, Jecheon, Korea, Nov. 2008.
  4. S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fibre-optic delay line filters with negative coefficients," Electron. Lett., vol. 31, no. 13, pp. 1095-1096, Jun. 1995. https://doi.org/10.1049/el:19950721
  5. T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable photonic microwave notch filter with negative coefficient based on polarization modulation," IEEE Photon. Technol. Lett., vol. 19, no. 12, pp. 907-909, Jun. 2007. https://doi.org/10.1109/LPT.2007.898753
  6. B. Shin, S. Oh, K. Yeo, and J. Lee, "Analysis of theoretical modulation characteristic under varying bias current of 2.5Gbit/s direct-modulated RSOA-based optical signal," in Proc. KICS, pp. 268-269, 2013.
  7. Y. Kim, S. R. Lee, S.-W. Jeon, and C.-S. Park, "Fiber sensor network for vessel monitoring based on code division multiple access," J. KICS, vol. 36, no. 10, pp. 1216-1221, Oct. 2011. https://doi.org/10.7840/KICS.2011.36B.10.1216
  8. L. Q. Guo and M. J. Connelly, "A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme," Opt. Commun., vol. 281, no. 17, pp. 4470-4473, Sept. 2008. https://doi.org/10.1016/j.optcom.2008.04.054
  9. V. Nguyen, S. Song, and J. Park, "A study on all-optical packet classifier based on cross gain modulation of semiconductor optical amplifier," in Proc. KICS, pp. 1267-1268, 2009.
  10. M. Asghari, I. H. White, and R. V. Penty, "Wavelength conversion using semiconductor optical amplifiers," J. Lightwave Technol., vol. 15, no. 7, pp. 1181-1190, Jul. 1997. https://doi.org/10.1109/50.596964