DOI QR코드

DOI QR Code

DNA Hypermethylation of Cell Cycle (p15 and p16) and Apoptotic (p14, p53, DAPK and TMS1) Genes in Peripheral Blood of Leukemia Patients

  • Bodoor, Khaldon (Department of Biology, Jordan University of Science and Technology) ;
  • Haddad, Yazan (Department of Biology, Jordan University of Science and Technology) ;
  • Alkhateeb, Asem (Department of Biology, Jordan University of Science and Technology) ;
  • Al-Abbadi, Abdullah (Department of Hematology and Oncology, University of Jordan) ;
  • Dowairi, Mohammad (Department of Hematology and Oncology, University of Jordan) ;
  • Magableh, Ahmad (Department of Hematology and Oncology, University of Jordan) ;
  • Bsoul, Nazzal (Department of Hematology and Oncology, University of Jordan) ;
  • Ghabkari, Abdulhameed (Department of Biology, Jordan University of Science and Technology)
  • Published : 2014.01.15

Abstract

Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.

Keywords

References

  1. Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P (2006). Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol, 76, 23-32. https://doi.org/10.1111/j.1600-0609.2005.00559.x
  2. Aggire X, Vismanos J, Calasanz M, et al (2003). Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decresed gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene. 22, 1070-2. https://doi.org/10.1038/sj.onc.1206236
  3. Agrawal S, Unterberg M, Koschmieder S, et al (2007). DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia. Cancer Res, 67, 1370-7. https://doi.org/10.1158/0008-5472.CAN-06-1681
  4. Brakensiek K, Langer F, Kreipe H, Lehmann U (2005). Absence of p21(CIP 1), p27(KIP 1) and p 57(KIP 2) methylation in MDS and AML. Leuk Res. 29, 1357-60. https://doi.org/10.1016/j.leukres.2005.04.012
  5. Canalli A, Yang H, Jeha S, et al (2005). Aberrant DNA methylation of a cell cycle regulatory pathway composed of P73, P15 and P57KIP2 is a rare event in children with acute lymphocytic leukemia. Leuk Res, 29, 881-5. https://doi.org/10.1016/j.leukres.2004.11.023
  6. Cechova H, Lassuthova P, Novakova L, et al (2012) Monitoring of methylation changes in 9p21 region in patients with myelodysplastic syndromes and acute myeloid leukemia. Neoplasma, 59, 168-74. https://doi.org/10.4149/neo_2012_022
  7. Chen H, Wu S (2002). Hypermethylation of the p15(INK4B) gene in acute leukemia and myelodysplastic syndromes. Chin Med J (Engl), 115, 987-90.
  8. Chim C, Tam C, Liang R, Kwong Y (2001). Methylation of p15 and p16 genes in adult acute leukemia: lack of prognostic significance. Cancer, 91, 2222-9. https://doi.org/10.1002/1097-0142(20010615)91:12<2222::AID-CNCR1252>3.0.CO;2-R
  9. Chim C, Wong A, Kwong Y (2003). Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias. Ann Hematol, 82, 738-42. https://doi.org/10.1007/s00277-003-0744-8
  10. Chim C, Fung T, Wong K, et al (2006a). Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor in chronic lymphocytic leukaemia in Chinese patients. J Clin Pathol, 59, 921-6. https://doi.org/10.1136/jcp.2005.035089
  11. Chim C, Fung T, Wong K, Lau J, Liang R (2006b). Frequent DAP kinase but not p14 or Apaf-1 hypermethylation in B-cell chronic lymphocytic leukemia. J Hum Genet, 51, 832-8. https://doi.org/10.1007/s10038-006-0029-x
  12. Chim C, Chan W, Kwong Y (2008). Epigenetic dysregulation of the DAP kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in acute leukaemias. J Clin Pathol, 61, 844-7. https://doi.org/10.1136/jcp.2007.047324
  13. Christiansen D, Andersen M, Pedersen-Bjergaard J (2003). Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia, 17, 1813-9. https://doi.org/10.1038/sj.leu.2403054
  14. Cohen O, Kimchi A (2001). DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ, 8, 6-15. https://doi.org/10.1038/sj.cdd.4400794
  15. Costello J, Fruhwald M, Smiraglia D, et al (2000). Aberrant CpG-island methylation has non-random and tumour-typespecific patterns. Nat Genet, 24, 132-8. https://doi.org/10.1038/72785
  16. Das P, Ramachandran K, Vanwert J, et al (2006). Methylation mediated silencing of TMS1/ASC gene in prostate cancer. Molecular Cancer, 5, 28. https://doi.org/10.1186/1476-4598-5-28
  17. Deligezer U, Erten N, Akisik E, Dalay N (2006). Methylation of the INK4A/ARF locus in blood mononuclear cells. Ann Hematol, 85, 102-7. https://doi.org/10.1007/s00277-005-0041-9
  18. Di Croce L (2005). Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet, 14, 77-84. https://doi.org/10.1093/hmg/ddi109
  19. Ding S, Gong B, Yu J, et al (2004). Methylation profile of the promoter CpG islands of 14 "drug-resistance" genes in hepatocellular carcinoma. World J Gastroenterol, 10, 3433-40.
  20. Dodge J, Munson C (2001). List AF. KG-1 and KG-1a model the p15 CpG island methylation observed in acute myeloid leukemia patients. Leuk Res, 25, 917-25. https://doi.org/10.1016/S0145-2126(01)00053-4
  21. Ekmekci C, Gutierrez M, Siraj A, Ozbek U, Bhatia K (2004). Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am J Hematol, 77, 233-40. https://doi.org/10.1002/ajh.20186
  22. El-Shakankiry N, Mossallam G (2006). p15 (INK4B) and E-cadherin CpG island methylation is frequent in Egyptian acute myeloid leukemia. J Egypt Natl Canc Inst, 18, 227-32.
  23. Esteller M, Tortola S, Toyota M, et al (2000). Hypermethylationassociated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res, 60, 129-33.
  24. Esteller M, Gonzalez S, Risques R, et al (2001). K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol, 19, 299-304.
  25. Esteller M (2002). CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 21, 5427-40. https://doi.org/10.1038/sj.onc.1205600
  26. Galm O, Wilop S, Luders C, et al (2005). Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol, 84, 39-46. https://doi.org/10.1007/s00277-005-0005-0
  27. Galm O, Herman J, Baylin S (2006). The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev, 20, 1-13. https://doi.org/10.1016/j.blre.2005.01.006
  28. Garcia-Manero G, Bueso-Ramos C, Daniel J, et al (2002a). DNA methylation patterns at relapse in adult acute lymphocytic leukemia. Clin Cancer Res, 8, 1897-903.
  29. Garcia-Manero G, Daniel J, Smith T, et al (2002b). DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin Cancer Res, 8, 2217-24.
  30. Garcia-Manero G, Jeha S, Daniel J, et al (2003). Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. Cancer, 97, 695-702. https://doi.org/10.1002/cncr.11090
  31. Griffiths E, Gore S, Hooker C, et al (2010) Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics, 5, 590-600. https://doi.org/10.4161/epi.5.7.12558
  32. Guinn B, Mills K (1997). p53 mutations, methylation and genomic instability in the progression of chronic myeloid leukemia. Leukemia Lymphoma, 26, 211-26.
  33. Guo S, Taki T, Ohnishi H, et al (2000). Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk Res, 24, 39-46. https://doi.org/10.1016/S0145-2126(99)00158-7
  34. Guran S, Bahce M, Beyan C, Korkmaz K, Yalcin A (1998). P53, p15INK4B, p16INK4A and p57KIP2 mutations during the progression of chronic myeloid leukemia. Haematologia (Budap). 29, 181-93.
  35. Herman J, Graff, J, Myohanen S, Nelkin B, Baylin S (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 93, 9821-6. https://doi.org/10.1073/pnas.93.18.9821
  36. Herman J, Civin C, Issa J, et al (1997). Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res, 57, 837-41.
  37. Hofmann W, Takeuchi S, Takeuchi N, et al (2006). Comparative analysis of hypermethylation of cell cycle control and DNAmismatch repair genes in low-density and CD34+ bone marrow cells from patients with myelodysplastic syndrome. Leuk Res, 30, 1347-53. https://doi.org/10.1016/j.leukres.2006.03.015
  38. Iravani M, Dhat R, Price C (1997). Methylation of the multi tumor suppressor gene-2 (MTS2, CDKN1, p15INK4B) in childhood acute lymphoblastic leukemia. Oncogene, 15, 2609-14. https://doi.org/10.1038/sj.onc.1201428
  39. Jemal A, Siegel R, Ward E, et al (2008). Cancer statistics 2008. CA Cancer J Clin, 58, 71-96. https://doi.org/10.3322/CA.2007.0010
  40. Johnson D, Walker C (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39, 295-312. https://doi.org/10.1146/annurev.pharmtox.39.1.295
  41. Jones P, Baylin S (2007). The epigenomics of cancer. Cell. 128, 683-92. https://doi.org/10.1016/j.cell.2007.01.029
  42. Kapelko-Slowik K, Wolowiec D, Sedek K, et al (2002). [Expression of p16INK4a, p15INK4b, p21WAF1/Clip1 cell cycle inhibitors on blastic cells in patients with acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL) ]. Pol Arch Med Wewn, 108, 849-53.
  43. Katzenellenbogen R, Baylin S, Herman J (1999). Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood, 93, 4347-53.
  44. Kim M, Yim S, Cho N,et al (2009) Homozygous deletion of CDKN2A (p16, p14) and CDKN2B (p15) genes is a poor prognostic factor in adult but not in childhood B-lineage acute lymphoblastic leukemia: a comparative deletion and hypermethylation study. Cancer Genetics and Cytogenetics, 195, 59-65. https://doi.org/10.1016/j.cancergencyto.2009.06.013
  45. Krug U, Ganser A, Koeffler H (2002). Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene, 21, 3475-95. https://doi.org/10.1038/sj.onc.1205322
  46. Kuiper R, Schoenmakers E, Van Reijmersdal S, et al (2007). High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia, 21, 1258-66. https://doi.org/10.1038/sj.leu.2404691
  47. Kurtovic N, Krajnovic M, Bogdanovic A, et al (2012) Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells. Med Oncol, 29, 3547-56. https://doi.org/10.1007/s12032-012-0289-6
  48. Kusy S, Cividin M, Sorel N, et al (2003). p14ARF, p15INK4b, and p16INK4a methylation status in chronic myelogenous leukemia. Blood, 101, 374-5. https://doi.org/10.1182/blood-2002-09-2834
  49. Lehmann U, Brakensiek K, Kreipe H (2004). Role of epigenetic changes in hematological malignancies. Ann Hematol, 83, 137-52. https://doi.org/10.1007/s00277-003-0798-7
  50. Levine A (1997). p53, the cellular gatekeeper for growth and division. Cell, 88, 323-31. https://doi.org/10.1016/S0092-8674(00)81871-1
  51. Markus J, Garin M, Bies J, et al (2007). Methylation-independent silencing of the tumor suppressor INK4b (p15) by CBFbeta-SMMHC in acute myelogenous leukemia with inv(16). Cancer Res, 67, 992-1000. https://doi.org/10.1158/0008-5472.CAN-06-2964
  52. Masumoto J, Dowds T, Schaner P, et al (2003). ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun, 303, 69-73. https://doi.org/10.1016/S0006-291X(03)00309-7
  53. Matsuno N, Hoshino K, Nanri T, et al (2005). p15 mRNA expression detected by real-time quantitative reverse transcriptase-polymerase chain reaction correlates with the methylation density of the gene in adult acute leukemia. Leuk Res, 29, 557-64. https://doi.org/10.1016/j.leukres.2004.11.003
  54. Matsushita C, Yang Y, Takeuchi S, et al (2004). Aberrant methylation in promoter-associated CpG islands of multiple genes in relapsed childhood acute lymphoblastic leukemia. Oncol Rep, 12, 97-9.
  55. Melki J, Vincent P, Clark S (1999). Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res, 59, 3730-40.
  56. Milani L, Lundmark A, Kiialainen A et al (2010). DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood, 115, 1214-25. https://doi.org/10.1182/blood-2009-04-214668
  57. Morse L, Chen D, Franklin D, Xiong Y, Chen-Kiang S (1997). Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18(INK4c) and IL-6. Immunity, 6, 47-56. https://doi.org/10.1016/S1074-7613(00)80241-1
  58. Nagasawa T, Zhang Q, Raghunath P, et al (2006). Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing. Leuk Res, 30, 303-12. https://doi.org/10.1016/j.leukres.2005.08.012
  59. Nguyen T, Mohrbacher A, Tsai Y, et al (2000). Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood, 95, 2990-2.
  60. Nguyen C, Liang G, Nguyen T (2001). Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J Natl Cancer Inst, 93, 1465-72. https://doi.org/10.1093/jnci/93.19.1465
  61. Nosaka K, Maeda M, Tamiya S, et al (2000). Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res, 60, 1043-8.
  62. NovaraF, Beri S, Bernardo M, et al (2009) Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood. Hum Genet, 126, 511-20. https://doi.org/10.1007/s00439-009-0689-7
  63. Olesen L, Nyvold C, Aggerholm A, et al (2005). Delineation and molecular characterization of acute myeloid leukemia patients with coduplication of FLT3 and MLL. Eur J Haematol, 75, 185-92. https://doi.org/10.1111/j.1600-0609.2005.00502.x
  64. Ozkul Y, Jurickova I, Findley H (2002). Variable Expression and Hypermethylation of p16 Gene in Patients with T-ALL and Cell Lines. Turk J Haematol, 19, 391-7.
  65. Parsons M, Vertino P (2006). Dual role of TMS1/ASC in death receptor signaling. Oncogene, 25, 6948-58. https://doi.org/10.1038/sj.onc.1209684
  66. Raval A, Tanner S, Byrd J, et al (2007). Downregulation of deathassociated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell, 129, 879-90. https://doi.org/10.1016/j.cell.2007.03.043
  67. Raveh T, Berissi H, Eisenstein M, Spivak T, Kimchi A (2000). A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc Natl Acad Sci USA. 97, 1572-7. https://doi.org/10.1073/pnas.020519497
  68. Raveh T, Droguett G, Horwitz M, Depinho R, Kimchi A (2001). DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol, 3, 1-7. https://doi.org/10.1038/35050500
  69. Robson C, Gnanapragasam V, Byrne R, Collins A, Neal D (1999). Transforming growth factor-beta1 up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J Endocrinol, 160, 257-66. https://doi.org/10.1677/joe.0.1600257
  70. Roman-Gomez J, Jimenez-Velasco A, Castillejo J, et al (2004). Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood, 104, 2492-8. https://doi.org/10.1182/blood-2004-03-0954
  71. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al (2005). Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol, 23, 7043-9. https://doi.org/10.1200/JCO.2005.01.4944
  72. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al (2006). Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia, 20, 1445-8. https://doi.org/10.1038/sj.leu.2404257
  73. Scholz C, Nimmrich I, Burger M, et al (2005). Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Ann Hematol, 84, 236-44. https://doi.org/10.1007/s00277-004-0969-1
  74. Schwaller J, Pabst T, Koeffler H, et al (1997). Expression and regulation of G1 cell-cycle inhibitors (p16INK4A, p15INK4B, p18INK4C, p19INK4D) in human acute myeloid leukemia and normal myeloid cells. Leukemia, 11, 54-63. https://doi.org/10.1038/sj.leu.2400522
  75. Scott S, Kimura T, Dong W, et al (2004). Methylation status of cyclin-dependent kinase inhibitor genes within the transforming growth factor beta pathway in human T-cell lymphoblastic lymphoma/leukemia. Leuk Res, 28, 1293-301. https://doi.org/10.1016/j.leukres.2004.03.019
  76. Scott S, Dong W, Ichinohasama R, et al (2006). 5-Aza-2'-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk Res, 30, 69-76. https://doi.org/10.1016/j.leukres.2005.05.010
  77. Seeliger B, Wilop S, Osieka R, Galm O, Jost E (2009) CpG island methylation patterns in chronic lymphocytic leukemia. Leuk & Lymph, 50, 419-26. https://doi.org/10.1080/10428190902756594
  78. Shimamoto T, Ohyashiki J, Ohyashiki K (2005). Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res, 29, 653-9. https://doi.org/10.1016/j.leukres.2004.11.014
  79. Stehlik C, Lee S, Dorfleutner A, et al (2003). Apoptosisassociated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol, 171, 6154-63. https://doi.org/10.4049/jimmunol.171.11.6154
  80. Takeuchi S, Matsushita M, Zimmermann M, et al (2011) Clinical Significance of Aberrant DNA Methylation in Childhood Acute Lymphoblastic Leukemia. Leuk Res, 35, 1345-9. https://doi.org/10.1016/j.leukres.2011.04.015
  81. Tang X, Khuri F, Lee J, et al (2000). Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst, 92, 1511-6. https://doi.org/10.1093/jnci/92.18.1511
  82. Toyota M, Kopecky K, Toyota M, et al (2001). Methylation profiling in acute myeloid leukemia. Blood, 97, 2823-9. https://doi.org/10.1182/blood.V97.9.2823
  83. Tsirigotis P, Pappa V, Labropoulos S, et al (2006). Mutational and methylation analysis of the cyclin-dependent kinase 4 inhibitor (p16INK4A) gene in chronic lymphocytic leukemia. Eur J Haematol, 76, 230-6. https://doi.org/10.1111/j.1600-0609.2005.00604.x
  84. Uehara E, Takeuchi S, Yang Y, et al (2012) Aberrant methylation in promoter-associated CpG islands of multiple genes in chonic myelogenous leukemia blast crisis. Oncol Lett, 3, 190-2.
  85. Valganon M, Giraldo P, Aggire X, et al (2005). p53 abberations do not predict individual response to fludarabine in patients with B-cell chronic lymophcytic leukemia in advanced stages Rai III/IV. Brit J Haematol, 129, 53-9. https://doi.org/10.1111/j.1365-2141.2005.05405.x
  86. Vilas-Zornoza A, Agirre X, Martin-Palanco V, et al (2011) Frequent and Simultaneous Epigenetic Inactivation of TP53Pathway Genes in Acute Lymphoblastic Leukemia. PLoS ONE, 6, 17012. https://doi.org/10.1371/journal.pone.0017012
  87. Wang R, Gehrke C, Ehrlich M (1980). Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res, 8, 4777-90. https://doi.org/10.1093/nar/8.20.4777
  88. Wei Q, Claus R, Hielscher T, et al (2013). Germline Allele-Specific Expression of DAPK1 in Chronic Lymphocytic Leukemia. PLoS ONE, 8, 55261. https://doi.org/10.1371/journal.pone.0055261
  89. Wolff L, Bies J (2013) p15Ink4b Functions in determining hematopoietic cell fates: Implications for its role as a tumor suppressor. Blood Cells, Molecules and Diseases, 50, 227-31. https://doi.org/10.1016/j.bcmd.2013.01.006
  90. Wong I, Ng M, Huang D, Lee J (2000). Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood, 95, 1942-9.
  91. Wright K, Deshmukh M (2006). Restricting apoptosis for postmitotic cell survival and its relevance to cancer. Cell Cycle, 5, 1616-20. https://doi.org/10.4161/cc.5.15.3129
  92. Wu Q, Guo X, Fan H, et al (2000). [P15(INK4B) gene methylation in malignant hematopoietic diseases]. Zhonghua Xue Ye Xue Za Zhi, 21, 644-6.
  93. Yang Y, Takeuchi S, Hofmann W, et al (2006). Aberrant methylation in promoter-associated CpG islands of multiple genes in acute lymphoblastic leukemia. Leuk Res, 30, 98-102. https://doi.org/10.1016/j.leukres.2005.06.002
  94. Yang H, Kadia T, Xiao L. et al (2009). Residual DNA methylation at remission is prognostic in adult Philadelphia chromosome-negative acute lymphocytic leukemia. Blood, 113, 1892-8. https://doi.org/10.1182/blood-2008-02-141002
  95. Zemliakova V, Strel'nikov V, Zborovskaia I, et al (2004). Abnormal methylation of p16/CDKN2A AND p14/ARF genes GpG Islands in non-small cell lung cancer and in acute lymphoblastic leukemia. Mol Biol, 38, 966-72.

Cited by

  1. Combined Effects Methylation of FHIT, RASSF1A and RARβ Genes on Non-Small Cell Lung Cancer in the Chinese Population vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5233
  2. Construction of a Protein-Protein Interaction Network for Chronic Myelocytic Leukemia and Pathway Prediction of Molecular Complexes vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5325
  3. Expression in Colorectal Cancer is Linked to Ethnic Origin vol.15, pp.5, 2014, https://doi.org/10.7314/APJCP.2014.15.5.2083
  4. ATAD2 is Highly Expressed in Ovarian Carcinomas and Indicates Poor Prognosis vol.15, pp.6, 2014, https://doi.org/10.7314/APJCP.2014.15.6.2777
  5. promoter methylation is associated with histone methyltransferase SETDB1 expression in sporadic cutaneous melanoma vol.23, pp.5, 2014, https://doi.org/10.1111/exd.12398
  6. The Implication of Cancer Progenitor Cells and the Role of Epigenetics in the Development of Novel Therapeutic Strategies for Chronic Myeloid Leukemia vol.22, pp.16, 2015, https://doi.org/10.1089/ars.2014.6096
  7. GALC gene is downregulated by promoter hypermethylation in Epstein-Barr virus-associated nasopharyngeal carcinoma vol.34, pp.3, 2015, https://doi.org/10.3892/or.2015.4134
  8. Promoter hypermethylation of PTPL1, PTPN6, DAPK, p16 and 5-azacitidine inhibits growth in DLBCL vol.35, pp.1, 2015, https://doi.org/10.3892/or.2015.4347
  9. 5-Azacitidine induces demethylation of PTPL1 and inhibits growth in non-Hodgkin lymphoma vol.36, pp.3, 2015, https://doi.org/10.3892/ijmm.2015.2269
  10. Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia vol.142, pp.2, 2016, https://doi.org/10.1007/s00432-015-2063-6
  11. Decreased expression of p27 is associated with malignant transformation and extrathyroidal extension in papillary thyroid carcinoma vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4163-y
  12. DNA methylation and leukemia susceptibility in China: Evidence from an updated meta-analysis vol.5, pp.3, 2016, https://doi.org/10.3892/mco.2016.959
  13. SMG1 Acts as a Novel Potential Tumor Suppressor with Epigenetic Inactivation in Acute Myeloid Leukemia vol.15, pp.9, 2014, https://doi.org/10.3390/ijms150917065
  14. Silencing of LSD1 gene modulates histone methylation and acetylation and induces the apoptosis of JeKo-1 and MOLT-4 cells vol.40, pp.2, 2017, https://doi.org/10.3892/ijmm.2017.3032
  15. Regulation of Cancer Stem Cell Metabolism by Secreted Frizzled-Related Protein 4 (sFRP4) vol.10, pp.2, 2018, https://doi.org/10.3390/cancers10020040
  16. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response vol.56, pp.3, 2018, https://doi.org/10.1007/s10528-018-9841-1