References
- Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P (2006). Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol, 76, 23-32. https://doi.org/10.1111/j.1600-0609.2005.00559.x
- Aggire X, Vismanos J, Calasanz M, et al (2003). Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decresed gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene. 22, 1070-2. https://doi.org/10.1038/sj.onc.1206236
- Agrawal S, Unterberg M, Koschmieder S, et al (2007). DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia. Cancer Res, 67, 1370-7. https://doi.org/10.1158/0008-5472.CAN-06-1681
- Brakensiek K, Langer F, Kreipe H, Lehmann U (2005). Absence of p21(CIP 1), p27(KIP 1) and p 57(KIP 2) methylation in MDS and AML. Leuk Res. 29, 1357-60. https://doi.org/10.1016/j.leukres.2005.04.012
- Canalli A, Yang H, Jeha S, et al (2005). Aberrant DNA methylation of a cell cycle regulatory pathway composed of P73, P15 and P57KIP2 is a rare event in children with acute lymphocytic leukemia. Leuk Res, 29, 881-5. https://doi.org/10.1016/j.leukres.2004.11.023
- Cechova H, Lassuthova P, Novakova L, et al (2012) Monitoring of methylation changes in 9p21 region in patients with myelodysplastic syndromes and acute myeloid leukemia. Neoplasma, 59, 168-74. https://doi.org/10.4149/neo_2012_022
- Chen H, Wu S (2002). Hypermethylation of the p15(INK4B) gene in acute leukemia and myelodysplastic syndromes. Chin Med J (Engl), 115, 987-90.
- Chim C, Tam C, Liang R, Kwong Y (2001). Methylation of p15 and p16 genes in adult acute leukemia: lack of prognostic significance. Cancer, 91, 2222-9. https://doi.org/10.1002/1097-0142(20010615)91:12<2222::AID-CNCR1252>3.0.CO;2-R
- Chim C, Wong A, Kwong Y (2003). Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias. Ann Hematol, 82, 738-42. https://doi.org/10.1007/s00277-003-0744-8
- Chim C, Fung T, Wong K, et al (2006a). Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor in chronic lymphocytic leukaemia in Chinese patients. J Clin Pathol, 59, 921-6. https://doi.org/10.1136/jcp.2005.035089
- Chim C, Fung T, Wong K, Lau J, Liang R (2006b). Frequent DAP kinase but not p14 or Apaf-1 hypermethylation in B-cell chronic lymphocytic leukemia. J Hum Genet, 51, 832-8. https://doi.org/10.1007/s10038-006-0029-x
- Chim C, Chan W, Kwong Y (2008). Epigenetic dysregulation of the DAP kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in acute leukaemias. J Clin Pathol, 61, 844-7. https://doi.org/10.1136/jcp.2007.047324
- Christiansen D, Andersen M, Pedersen-Bjergaard J (2003). Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia, 17, 1813-9. https://doi.org/10.1038/sj.leu.2403054
- Cohen O, Kimchi A (2001). DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ, 8, 6-15. https://doi.org/10.1038/sj.cdd.4400794
- Costello J, Fruhwald M, Smiraglia D, et al (2000). Aberrant CpG-island methylation has non-random and tumour-typespecific patterns. Nat Genet, 24, 132-8. https://doi.org/10.1038/72785
- Das P, Ramachandran K, Vanwert J, et al (2006). Methylation mediated silencing of TMS1/ASC gene in prostate cancer. Molecular Cancer, 5, 28. https://doi.org/10.1186/1476-4598-5-28
- Deligezer U, Erten N, Akisik E, Dalay N (2006). Methylation of the INK4A/ARF locus in blood mononuclear cells. Ann Hematol, 85, 102-7. https://doi.org/10.1007/s00277-005-0041-9
- Di Croce L (2005). Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet, 14, 77-84. https://doi.org/10.1093/hmg/ddi109
- Ding S, Gong B, Yu J, et al (2004). Methylation profile of the promoter CpG islands of 14 "drug-resistance" genes in hepatocellular carcinoma. World J Gastroenterol, 10, 3433-40.
- Dodge J, Munson C (2001). List AF. KG-1 and KG-1a model the p15 CpG island methylation observed in acute myeloid leukemia patients. Leuk Res, 25, 917-25. https://doi.org/10.1016/S0145-2126(01)00053-4
- Ekmekci C, Gutierrez M, Siraj A, Ozbek U, Bhatia K (2004). Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am J Hematol, 77, 233-40. https://doi.org/10.1002/ajh.20186
- El-Shakankiry N, Mossallam G (2006). p15 (INK4B) and E-cadherin CpG island methylation is frequent in Egyptian acute myeloid leukemia. J Egypt Natl Canc Inst, 18, 227-32.
- Esteller M, Tortola S, Toyota M, et al (2000). Hypermethylationassociated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res, 60, 129-33.
- Esteller M, Gonzalez S, Risques R, et al (2001). K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol, 19, 299-304.
- Esteller M (2002). CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 21, 5427-40. https://doi.org/10.1038/sj.onc.1205600
- Galm O, Wilop S, Luders C, et al (2005). Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol, 84, 39-46. https://doi.org/10.1007/s00277-005-0005-0
- Galm O, Herman J, Baylin S (2006). The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev, 20, 1-13. https://doi.org/10.1016/j.blre.2005.01.006
- Garcia-Manero G, Bueso-Ramos C, Daniel J, et al (2002a). DNA methylation patterns at relapse in adult acute lymphocytic leukemia. Clin Cancer Res, 8, 1897-903.
- Garcia-Manero G, Daniel J, Smith T, et al (2002b). DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin Cancer Res, 8, 2217-24.
- Garcia-Manero G, Jeha S, Daniel J, et al (2003). Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. Cancer, 97, 695-702. https://doi.org/10.1002/cncr.11090
- Griffiths E, Gore S, Hooker C, et al (2010) Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics, 5, 590-600. https://doi.org/10.4161/epi.5.7.12558
- Guinn B, Mills K (1997). p53 mutations, methylation and genomic instability in the progression of chronic myeloid leukemia. Leukemia Lymphoma, 26, 211-26.
- Guo S, Taki T, Ohnishi H, et al (2000). Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk Res, 24, 39-46. https://doi.org/10.1016/S0145-2126(99)00158-7
- Guran S, Bahce M, Beyan C, Korkmaz K, Yalcin A (1998). P53, p15INK4B, p16INK4A and p57KIP2 mutations during the progression of chronic myeloid leukemia. Haematologia (Budap). 29, 181-93.
- Herman J, Graff, J, Myohanen S, Nelkin B, Baylin S (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 93, 9821-6. https://doi.org/10.1073/pnas.93.18.9821
- Herman J, Civin C, Issa J, et al (1997). Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res, 57, 837-41.
- Hofmann W, Takeuchi S, Takeuchi N, et al (2006). Comparative analysis of hypermethylation of cell cycle control and DNAmismatch repair genes in low-density and CD34+ bone marrow cells from patients with myelodysplastic syndrome. Leuk Res, 30, 1347-53. https://doi.org/10.1016/j.leukres.2006.03.015
- Iravani M, Dhat R, Price C (1997). Methylation of the multi tumor suppressor gene-2 (MTS2, CDKN1, p15INK4B) in childhood acute lymphoblastic leukemia. Oncogene, 15, 2609-14. https://doi.org/10.1038/sj.onc.1201428
- Jemal A, Siegel R, Ward E, et al (2008). Cancer statistics 2008. CA Cancer J Clin, 58, 71-96. https://doi.org/10.3322/CA.2007.0010
- Johnson D, Walker C (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39, 295-312. https://doi.org/10.1146/annurev.pharmtox.39.1.295
- Jones P, Baylin S (2007). The epigenomics of cancer. Cell. 128, 683-92. https://doi.org/10.1016/j.cell.2007.01.029
- Kapelko-Slowik K, Wolowiec D, Sedek K, et al (2002). [Expression of p16INK4a, p15INK4b, p21WAF1/Clip1 cell cycle inhibitors on blastic cells in patients with acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL) ]. Pol Arch Med Wewn, 108, 849-53.
- Katzenellenbogen R, Baylin S, Herman J (1999). Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood, 93, 4347-53.
- Kim M, Yim S, Cho N,et al (2009) Homozygous deletion of CDKN2A (p16, p14) and CDKN2B (p15) genes is a poor prognostic factor in adult but not in childhood B-lineage acute lymphoblastic leukemia: a comparative deletion and hypermethylation study. Cancer Genetics and Cytogenetics, 195, 59-65. https://doi.org/10.1016/j.cancergencyto.2009.06.013
- Krug U, Ganser A, Koeffler H (2002). Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene, 21, 3475-95. https://doi.org/10.1038/sj.onc.1205322
- Kuiper R, Schoenmakers E, Van Reijmersdal S, et al (2007). High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia, 21, 1258-66. https://doi.org/10.1038/sj.leu.2404691
- Kurtovic N, Krajnovic M, Bogdanovic A, et al (2012) Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells. Med Oncol, 29, 3547-56. https://doi.org/10.1007/s12032-012-0289-6
- Kusy S, Cividin M, Sorel N, et al (2003). p14ARF, p15INK4b, and p16INK4a methylation status in chronic myelogenous leukemia. Blood, 101, 374-5. https://doi.org/10.1182/blood-2002-09-2834
- Lehmann U, Brakensiek K, Kreipe H (2004). Role of epigenetic changes in hematological malignancies. Ann Hematol, 83, 137-52. https://doi.org/10.1007/s00277-003-0798-7
- Levine A (1997). p53, the cellular gatekeeper for growth and division. Cell, 88, 323-31. https://doi.org/10.1016/S0092-8674(00)81871-1
- Markus J, Garin M, Bies J, et al (2007). Methylation-independent silencing of the tumor suppressor INK4b (p15) by CBFbeta-SMMHC in acute myelogenous leukemia with inv(16). Cancer Res, 67, 992-1000. https://doi.org/10.1158/0008-5472.CAN-06-2964
- Masumoto J, Dowds T, Schaner P, et al (2003). ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun, 303, 69-73. https://doi.org/10.1016/S0006-291X(03)00309-7
- Matsuno N, Hoshino K, Nanri T, et al (2005). p15 mRNA expression detected by real-time quantitative reverse transcriptase-polymerase chain reaction correlates with the methylation density of the gene in adult acute leukemia. Leuk Res, 29, 557-64. https://doi.org/10.1016/j.leukres.2004.11.003
- Matsushita C, Yang Y, Takeuchi S, et al (2004). Aberrant methylation in promoter-associated CpG islands of multiple genes in relapsed childhood acute lymphoblastic leukemia. Oncol Rep, 12, 97-9.
- Melki J, Vincent P, Clark S (1999). Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res, 59, 3730-40.
- Milani L, Lundmark A, Kiialainen A et al (2010). DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood, 115, 1214-25. https://doi.org/10.1182/blood-2009-04-214668
- Morse L, Chen D, Franklin D, Xiong Y, Chen-Kiang S (1997). Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18(INK4c) and IL-6. Immunity, 6, 47-56. https://doi.org/10.1016/S1074-7613(00)80241-1
- Nagasawa T, Zhang Q, Raghunath P, et al (2006). Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing. Leuk Res, 30, 303-12. https://doi.org/10.1016/j.leukres.2005.08.012
- Nguyen T, Mohrbacher A, Tsai Y, et al (2000). Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood, 95, 2990-2.
- Nguyen C, Liang G, Nguyen T (2001). Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J Natl Cancer Inst, 93, 1465-72. https://doi.org/10.1093/jnci/93.19.1465
- Nosaka K, Maeda M, Tamiya S, et al (2000). Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res, 60, 1043-8.
- NovaraF, Beri S, Bernardo M, et al (2009) Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood. Hum Genet, 126, 511-20. https://doi.org/10.1007/s00439-009-0689-7
- Olesen L, Nyvold C, Aggerholm A, et al (2005). Delineation and molecular characterization of acute myeloid leukemia patients with coduplication of FLT3 and MLL. Eur J Haematol, 75, 185-92. https://doi.org/10.1111/j.1600-0609.2005.00502.x
- Ozkul Y, Jurickova I, Findley H (2002). Variable Expression and Hypermethylation of p16 Gene in Patients with T-ALL and Cell Lines. Turk J Haematol, 19, 391-7.
- Parsons M, Vertino P (2006). Dual role of TMS1/ASC in death receptor signaling. Oncogene, 25, 6948-58. https://doi.org/10.1038/sj.onc.1209684
- Raval A, Tanner S, Byrd J, et al (2007). Downregulation of deathassociated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell, 129, 879-90. https://doi.org/10.1016/j.cell.2007.03.043
- Raveh T, Berissi H, Eisenstein M, Spivak T, Kimchi A (2000). A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc Natl Acad Sci USA. 97, 1572-7. https://doi.org/10.1073/pnas.020519497
- Raveh T, Droguett G, Horwitz M, Depinho R, Kimchi A (2001). DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol, 3, 1-7. https://doi.org/10.1038/35050500
- Robson C, Gnanapragasam V, Byrne R, Collins A, Neal D (1999). Transforming growth factor-beta1 up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J Endocrinol, 160, 257-66. https://doi.org/10.1677/joe.0.1600257
- Roman-Gomez J, Jimenez-Velasco A, Castillejo J, et al (2004). Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood, 104, 2492-8. https://doi.org/10.1182/blood-2004-03-0954
- Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al (2005). Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol, 23, 7043-9. https://doi.org/10.1200/JCO.2005.01.4944
- Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al (2006). Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia, 20, 1445-8. https://doi.org/10.1038/sj.leu.2404257
- Scholz C, Nimmrich I, Burger M, et al (2005). Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Ann Hematol, 84, 236-44. https://doi.org/10.1007/s00277-004-0969-1
- Schwaller J, Pabst T, Koeffler H, et al (1997). Expression and regulation of G1 cell-cycle inhibitors (p16INK4A, p15INK4B, p18INK4C, p19INK4D) in human acute myeloid leukemia and normal myeloid cells. Leukemia, 11, 54-63. https://doi.org/10.1038/sj.leu.2400522
- Scott S, Kimura T, Dong W, et al (2004). Methylation status of cyclin-dependent kinase inhibitor genes within the transforming growth factor beta pathway in human T-cell lymphoblastic lymphoma/leukemia. Leuk Res, 28, 1293-301. https://doi.org/10.1016/j.leukres.2004.03.019
- Scott S, Dong W, Ichinohasama R, et al (2006). 5-Aza-2'-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk Res, 30, 69-76. https://doi.org/10.1016/j.leukres.2005.05.010
- Seeliger B, Wilop S, Osieka R, Galm O, Jost E (2009) CpG island methylation patterns in chronic lymphocytic leukemia. Leuk & Lymph, 50, 419-26. https://doi.org/10.1080/10428190902756594
- Shimamoto T, Ohyashiki J, Ohyashiki K (2005). Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res, 29, 653-9. https://doi.org/10.1016/j.leukres.2004.11.014
- Stehlik C, Lee S, Dorfleutner A, et al (2003). Apoptosisassociated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol, 171, 6154-63. https://doi.org/10.4049/jimmunol.171.11.6154
- Takeuchi S, Matsushita M, Zimmermann M, et al (2011) Clinical Significance of Aberrant DNA Methylation in Childhood Acute Lymphoblastic Leukemia. Leuk Res, 35, 1345-9. https://doi.org/10.1016/j.leukres.2011.04.015
- Tang X, Khuri F, Lee J, et al (2000). Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst, 92, 1511-6. https://doi.org/10.1093/jnci/92.18.1511
- Toyota M, Kopecky K, Toyota M, et al (2001). Methylation profiling in acute myeloid leukemia. Blood, 97, 2823-9. https://doi.org/10.1182/blood.V97.9.2823
- Tsirigotis P, Pappa V, Labropoulos S, et al (2006). Mutational and methylation analysis of the cyclin-dependent kinase 4 inhibitor (p16INK4A) gene in chronic lymphocytic leukemia. Eur J Haematol, 76, 230-6. https://doi.org/10.1111/j.1600-0609.2005.00604.x
- Uehara E, Takeuchi S, Yang Y, et al (2012) Aberrant methylation in promoter-associated CpG islands of multiple genes in chonic myelogenous leukemia blast crisis. Oncol Lett, 3, 190-2.
- Valganon M, Giraldo P, Aggire X, et al (2005). p53 abberations do not predict individual response to fludarabine in patients with B-cell chronic lymophcytic leukemia in advanced stages Rai III/IV. Brit J Haematol, 129, 53-9. https://doi.org/10.1111/j.1365-2141.2005.05405.x
- Vilas-Zornoza A, Agirre X, Martin-Palanco V, et al (2011) Frequent and Simultaneous Epigenetic Inactivation of TP53Pathway Genes in Acute Lymphoblastic Leukemia. PLoS ONE, 6, 17012. https://doi.org/10.1371/journal.pone.0017012
- Wang R, Gehrke C, Ehrlich M (1980). Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res, 8, 4777-90. https://doi.org/10.1093/nar/8.20.4777
- Wei Q, Claus R, Hielscher T, et al (2013). Germline Allele-Specific Expression of DAPK1 in Chronic Lymphocytic Leukemia. PLoS ONE, 8, 55261. https://doi.org/10.1371/journal.pone.0055261
- Wolff L, Bies J (2013) p15Ink4b Functions in determining hematopoietic cell fates: Implications for its role as a tumor suppressor. Blood Cells, Molecules and Diseases, 50, 227-31. https://doi.org/10.1016/j.bcmd.2013.01.006
- Wong I, Ng M, Huang D, Lee J (2000). Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood, 95, 1942-9.
- Wright K, Deshmukh M (2006). Restricting apoptosis for postmitotic cell survival and its relevance to cancer. Cell Cycle, 5, 1616-20. https://doi.org/10.4161/cc.5.15.3129
- Wu Q, Guo X, Fan H, et al (2000). [P15(INK4B) gene methylation in malignant hematopoietic diseases]. Zhonghua Xue Ye Xue Za Zhi, 21, 644-6.
- Yang Y, Takeuchi S, Hofmann W, et al (2006). Aberrant methylation in promoter-associated CpG islands of multiple genes in acute lymphoblastic leukemia. Leuk Res, 30, 98-102. https://doi.org/10.1016/j.leukres.2005.06.002
- Yang H, Kadia T, Xiao L. et al (2009). Residual DNA methylation at remission is prognostic in adult Philadelphia chromosome-negative acute lymphocytic leukemia. Blood, 113, 1892-8. https://doi.org/10.1182/blood-2008-02-141002
- Zemliakova V, Strel'nikov V, Zborovskaia I, et al (2004). Abnormal methylation of p16/CDKN2A AND p14/ARF genes GpG Islands in non-small cell lung cancer and in acute lymphoblastic leukemia. Mol Biol, 38, 966-72.
Cited by
- Combined Effects Methylation of FHIT, RASSF1A and RARβ Genes on Non-Small Cell Lung Cancer in the Chinese Population vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5233
- Construction of a Protein-Protein Interaction Network for Chronic Myelocytic Leukemia and Pathway Prediction of Molecular Complexes vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5325
- Expression in Colorectal Cancer is Linked to Ethnic Origin vol.15, pp.5, 2014, https://doi.org/10.7314/APJCP.2014.15.5.2083
- ATAD2 is Highly Expressed in Ovarian Carcinomas and Indicates Poor Prognosis vol.15, pp.6, 2014, https://doi.org/10.7314/APJCP.2014.15.6.2777
- promoter methylation is associated with histone methyltransferase SETDB1 expression in sporadic cutaneous melanoma vol.23, pp.5, 2014, https://doi.org/10.1111/exd.12398
- The Implication of Cancer Progenitor Cells and the Role of Epigenetics in the Development of Novel Therapeutic Strategies for Chronic Myeloid Leukemia vol.22, pp.16, 2015, https://doi.org/10.1089/ars.2014.6096
- GALC gene is downregulated by promoter hypermethylation in Epstein-Barr virus-associated nasopharyngeal carcinoma vol.34, pp.3, 2015, https://doi.org/10.3892/or.2015.4134
- Promoter hypermethylation of PTPL1, PTPN6, DAPK, p16 and 5-azacitidine inhibits growth in DLBCL vol.35, pp.1, 2015, https://doi.org/10.3892/or.2015.4347
- 5-Azacitidine induces demethylation of PTPL1 and inhibits growth in non-Hodgkin lymphoma vol.36, pp.3, 2015, https://doi.org/10.3892/ijmm.2015.2269
- Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia vol.142, pp.2, 2016, https://doi.org/10.1007/s00432-015-2063-6
- Decreased expression of p27 is associated with malignant transformation and extrathyroidal extension in papillary thyroid carcinoma vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4163-y
- DNA methylation and leukemia susceptibility in China: Evidence from an updated meta-analysis vol.5, pp.3, 2016, https://doi.org/10.3892/mco.2016.959
- SMG1 Acts as a Novel Potential Tumor Suppressor with Epigenetic Inactivation in Acute Myeloid Leukemia vol.15, pp.9, 2014, https://doi.org/10.3390/ijms150917065
- Silencing of LSD1 gene modulates histone methylation and acetylation and induces the apoptosis of JeKo-1 and MOLT-4 cells vol.40, pp.2, 2017, https://doi.org/10.3892/ijmm.2017.3032
- Regulation of Cancer Stem Cell Metabolism by Secreted Frizzled-Related Protein 4 (sFRP4) vol.10, pp.2, 2018, https://doi.org/10.3390/cancers10020040
- Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response vol.56, pp.3, 2018, https://doi.org/10.1007/s10528-018-9841-1