DOI QR코드

DOI QR Code

오존-활성탄 복합공정에 의한 페놀 제거

Phenol Removal by Ozone-Activated Carbon Hybrid Process

  • 김환익 (경남과학기술대학교 환경공학과.녹색기술연구소) ;
  • 문지훈 (경남과학기술대학교 공동실험실습관) ;
  • 정재우 (경남과학기술대학교 환경공학과.녹색기술연구소)
  • Kim, Hwanik (Department of Environmental Engineering & Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Moon, Ji-Hoon (Central Laboratory, Gyeongnam National University of Science and Technology) ;
  • Chung, Jae Woo (Department of Environmental Engineering & Green Technology Institute, Gyeongnam National University of Science and Technology)
  • 투고 : 2013.10.27
  • 심사 : 2014.04.25
  • 발행 : 2014.05.31

초록

오존-활성탄 복합공정에 의한 페놀제거 특성과 그에 미치는 운전변수의 영향에 관해 회분식 실험을 통하여 동력학적 연구를 수행하였다. 활성탄은 오존의 자가분해를 촉진시켜 $OH{\cdot}$ 발생시키므로 페놀분해 속도를 증가시키는 것으로 나타났다. 활성탄의 투입량이 증가함에 따라 페놀분해 반응의 유사 일차반응 속도상수가 증가하고 페놀제거의 반감기가 감소하는 것으로 나타났다. 수용액의 pH 증가는 수산화이온이 개시하는 오존분해의 연쇄반응에 의해 $OH{\cdot}$를 생성시키므로 페놀분해 속도를 증가시키는 것으로 나타났다. 페놀의 완전산화 지표인 총유기탄소(TOC) 제거효율은 활성탄을 투입할 때 투입하지 않은 조건보다 약 3.2배 높은 결과를 얻을 수 있었다.

Effects of operating parameters such as activated carbon dose and pH on the phenol oxidation in ozone-activated carbon hybrid process were investigated through a kinetic study. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting phenol degradation. The pseudo-first order rate constants of phenol degradation increased and half-life of phenol decreased with activated carbon dose. The increase of pH enhanced $OH{\cdot}$ generation through chain reactions initiated by $OH^-$, therefore increasing the phenol degradation rate. TOC removal efficiency increased about 3.2 times by adding activated carbon in ozonation process.

키워드

참고문헌

  1. Kim, H., Lee, M. E., Kang, S. and Chung, J. W., "Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon," J. Kor. Soc. Environ. Eng., 35(3), 220-225(2013). https://doi.org/10.4491/KSEE.2013.35.3.220
  2. Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P. and Li N., "Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers," Chem. Eng. J., 157, 348-356(2010). https://doi.org/10.1016/j.cej.2009.11.013
  3. Dąbrowski, A., Podkoscielny, P., Hubicki, Z. and Barczak, M., "Adsorption of phenolic compounds by activated carbon- a critical review," Chemosphere, 58(8), 1049-1070(2005). https://doi.org/10.1016/j.chemosphere.2004.09.067
  4. Park, J, "Effects of operating parameters on ozone generation and phenol conversion in ozonation process," Department of Environmental Engineering, Graduate School JinJu National University(2009).
  5. Song, S. J,, Oh, B. S., Kim, K. S., Na, S. J., Lee, E. T. and Kang, J. W., "A Study on the Advanced Oxidation Process by Catalytic Ozonation with Granular Activated Carbon," J. Kor. Soc. Environ. Eng., 26(1), 52-57(2004).
  6. Kang, J. W., "Kinetic Studies of the Advanced Oxidation Processes Involving Ozone, Hydrogen peroxide, and Ultraviolet Radiation(I)," J. Kor. Soc. Environ. Eng., 15(2), 501-510(1993).
  7. Zhang, J., Lee, K. H., Cuic, L. and Jeong, T. S., "Degradation of methylene blue in aqueous solution by ozone-based process," J. Ind. Eng. Chem., 15(2), 185-189(2009). https://doi.org/10.1016/j.jiec.2008.09.014
  8. Lei, L., Gu, L., Zhang, X. and Su, Y., "Catalytic oxidation of highly concentrated real industrial wastewater by integrated ozone and activated carbon," Appl. Catal. A: General, 327(2), 287-294(2007). https://doi.org/10.1016/j.apcata.2007.05.027
  9. Orra, P. T., Jonesa, G. J. and Hamilton, G. R., "Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide-implications for compliance with the Australian drinking water guidelines," Water Res., 38(20), 4455-4461(2004). https://doi.org/10.1016/j.watres.2004.08.024
  10. Dehoulia, H., Chedeville, O., Cagnon, B., Caquereta, V. and Portea, C., "Influences of pH, temperature and activated carbon properties on the interaction ozone/activated carbon for a wastewater treatment process," Desalination, 254(1-3), 12-16(2010). https://doi.org/10.1016/j.desal.2009.12.021
  11. Oliveira, T. F., Chedeville, O., Cagnon, B. and Fauduet, H., "Degradation kinetic of DEP in water by ozone/activated carbon process: Influence of pH," Desalination, 269(1-3), 271-275(2011). https://doi.org/10.1016/j.desal.2010.11.013
  12. Rivas, F. J., Beltran, F., Gimeno, O., Acedo, B. and Carvalho, F., "Stabilized leachates: Ozone-activated carbon treatment and kinetics," Water Res., 37(20), 4823-4834(2003). https://doi.org/10.1016/j.watres.2003.08.007
  13. Poloa, M. S., Gunten, U. V. and Utrilla, J., "Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters," Water Res., 39(14), 3189-3198(2005). https://doi.org/10.1016/j.watres.2005.05.026
  14. Utrilla, J. R., Diaz, J. M., Polo, M. S., Garcia, F. M. A. and Toledo, I. B., "Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on $O_3$ and $O_3/H_2O_2$," Water Res., 40(8), 1717-1725(2006). https://doi.org/10.1016/j.watres.2006.02.015
  15. Polo, M. S., Utrilla, J. R., Joya, G. P., García, M. A. F. and Toledo, I. B., "Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system," Water Res., 42(15), 4163-4171(2008). https://doi.org/10.1016/j.watres.2008.05.034
  16. Oliveira, T. F., Chedeville, O., Fauduet, H., Cagnon, B., "Use of ozone/activated carbon coupling to remove diethyl phthalate from water: Influence of activated carbon textural and chemical properties," Desalination, 276(1-3), 359-365(2011). https://doi.org/10.1016/j.desal.2011.03.084
  17. Valdes, H., Zaror, C.A., "Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach," Chemosphere, 65(7), 1134-1136(2006).
  18. Moon, J. H., "The catalytic effect of the ozone/CNT process using para-chlorobenzoic acid," Department of Environmental Engineering, Graduate School Yonsei University(2013).
  19. Alvarez, P. M., Garcia-Araya, J. F., Beltrana, F. J., Giraldez, I., Jaramillo, J. and Gomez-Serrano, V., "The influence of various factors on aqueous ozone decomposition by granular activated carbon and the development of mechanistic approach," Carbon, 44(14), 3102-3112(2006). https://doi.org/10.1016/j.carbon.2006.03.016
  20. Jans, U. and Horigne, J., "Activated Carbon and Carbon Black Catalyzed transformation of aqueous ozone into OH radical," Ozone Sci. Eng., 20(1), 67-87(1998). https://doi.org/10.1080/01919519808547291
  21. Sanchez-Polo, M. and Rivera-Utrill, J., "Effect of the ozonecarbon reaction on the catalytic activity of activated carbon during the degradation of 1, 3, 6-naphthalenetrisulphonic acid with ozone," Carbon, 41(2), 303-307(2003). https://doi.org/10.1016/S0008-6223(02)00288-9
  22. Kang, J. W., Choie, H. C., Jung, S. W. and Choie, S. I., "Evaluation of the Ozone / high pH and Ozone / Hydrogen Peroxide Advanced Oxidation Processes(II)," J. Kor. Soc. Environ. Eng., 15(3), 537-547(1993).
  23. Gunten, U., "Ozonation of drinking water: Part I. Oxidation kinetics and product formation," Water Res., 37(7), 1443-1467(2003). https://doi.org/10.1016/S0043-1354(02)00457-8
  24. Zeng, Z., Zou, H., Lic, X., Arowo, M., Sun, B., Chen, J., Chu, G. and Shao, Lei., "Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed," Chem. Eng. J., 229, 404-411(2013). https://doi.org/10.1016/j.cej.2013.06.018
  25. Wu, J., Rudy, K. and Spark, J., "Oxidation of aqueous phenol by ozone and peroxidase," Adv. Environ. Res., 4(4), 339-346(2000). https://doi.org/10.1016/S1093-0191(00)00034-4

피인용 문헌

  1. Study on characteristics of specific hazardous substances in the industrial wastewater effluent vol.29, pp.3, 2016, https://doi.org/10.5806/AST.2016.29.3.114
  2. Effect of Operating Parameters on Methyl Orange Removal in Catalytic Ozonation vol.39, pp.7, 2017, https://doi.org/10.4491/KSEE.2017.39.7.412