References
- J. K. Wassei and R. B. Kaner, Graphene a promising transparent conductor, Materialstoday, 13, 52-59 (2010).
- K.-H. Lee, S.-M. Kim, J. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, All-solution-processed transparent thin film transistor and its application to liquid crystals driving, Adv. Mater., 25, 3209-3214 (2013). https://doi.org/10.1002/adma.201300084
- K. Nakashima and Y. Kumahara, Effect of tin oxide dispersion on nodule formation in ITO Sputtering, Vacuum, 66, 221-226 (2002). https://doi.org/10.1016/S0042-207X(02)00145-8
- N. Manavizadeh, F. A. Boroumand, E. A. Soleimani, F. Raissi, S. Bagherzadeh, A. Khodayari, and M. A. Rasouil, Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application, Thin Solid Films, 517, 2324-2327 (2009). https://doi.org/10.1016/j.tsf.2008.11.027
- D. S. Hecht, L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 23, 1482-1513 (2011). https://doi.org/10.1002/adma.201003188
- K. A. Sierros, N. J. Morris, K. Ramji, and D. R. Cairns, Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices, Thin Solid Films, 517, 2590-2595 (2009). https://doi.org/10.1016/j.tsf.2008.10.031
- G. A. Potoczny, T. S. Bejitual, J. S. Abell, K. A. Sierros, D. R. Cairns, and S. N. Kukureka, Flexibility and electrical stability of polyester- based device electrodes under monotonic and cyclic buckling conditions, Thin Solid Films, 528, 205-212 (2013). https://doi.org/10.1016/j.tsf.2012.09.082
- L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955-2963 (2010). https://doi.org/10.1021/nn1005232
- A. B. V. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, Silver nanowire based flexible electrodes with improved properties: high conductivity, transparency, adhesion and low haze, Materials Research Bulletin, 48, 2944-2949 (2013). https://doi.org/10.1016/j.materresbull.2013.04.035
- D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method, Nanoscale, 5, 977-983 (2013). https://doi.org/10.1039/c2nr32221h
- R. Zhu, C.-H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T.-B. Song, C.-C Chen, P. S. Weiss, G. Li, and Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors, ACS Nano, 5, 9877-9882 (2011). https://doi.org/10.1021/nn203576v
- M. K. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D.-H. Kim, D.-G. Kim, J.-K. Kim, J. Park, Y.-C. Kang, J. Heo, S.-H. Jin, J. H. Park, and J.-W. Kang, Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes, Adv. Funct. Mater., 23, 4177-4184 (2013). https://doi.org/10.1002/adfm.201202646
- K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146, 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
- K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009). https://doi.org/10.1038/nature07719
- S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. O. zyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature nanotechnology, 5, 574-578 (2010). https://doi.org/10.1038/nnano.2010.132
- S. Pang, Y. Hernandez, X. Feng, and K. Mullen, Graphene as transparent electrode material for organic electronics, Adv. Mater., 23, 2779-2795 (2011). https://doi.org/10.1002/adma.201100304
- D. S. Hecht, A. M. Heintz, R. S. Lee, L. Hu, B. Moore, C. Cucksey, and S. Risser, High conductivity transparent carbon nanotube films deposited from superacid, Nanotechnology, 22, 075201 (2011). https://doi.org/10.1088/0957-4484/22/7/075201
- J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, and T. J. Marks, Organic light-emitting diodes having carbon nanotube anodes, Nano Lett., 6, 2472-2477 (2006). https://doi.org/10.1021/nl061616a
- L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater., 12, 481-494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
- J. Ouyang, "Secondary doping" methods to significantly enhance the conductivity of PEDOT : PSS for its application as transparent electrode of optoelectronic devices, Displays, 34, 423-436 (2013). https://doi.org/10.1016/j.displa.2013.08.007
- D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci., 5, 9662-9671 (2012). https://doi.org/10.1039/c2ee22595f
- C. Badre, L. Marquant, A. M. Alsayed, and L. A. Hough, Highly conductive Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) films using 1-Ethyl-3-methylimidazolium tetracyanoborate ionic liquid, Adv. Funct. Mater., 22, 2723-2727 (2012). https://doi.org/10.1002/adfm.201200225
- N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y.-R. Jo, B.-J. Kim, and K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization, Adv. Mater., 26, 2268-2272 (2014). https://doi.org/10.1002/adma.201304611
- Y. Xia, K. Sun, and J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices, Adv. Mater., 24, 2436-2440 (2012). https://doi.org/10.1002/adma.201104795
- Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganas, Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue, Polymer, 35, 1347-1351 (1994). https://doi.org/10.1016/0032-3861(94)90332-8
- A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol, Organic electronics, 9, 727-734 (2008). https://doi.org/10.1016/j.orgel.2008.05.006
- J.-H. Yun and J. Kim, Double transparent conducting oxide films for photoelectric devices, Materials Letters, 70, 4-6 (2012). https://doi.org/10.1016/j.matlet.2011.11.053
- H.-W. Wu and C.-H. Chu, Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering, Materials Letters, 105, 65-67 (2013). https://doi.org/10.1016/j.matlet.2013.04.017
- F. Li, Y. Zhang, C. Wu, Z. Lin, B. Zhang, and T. Guo, Improving efficiency of organic light-emitting diodes fabricated utilizing AZO/Ag/AZO multilayer electrode Vacuum, 86, 1895-1897 (2012). https://doi.org/10.1016/j.vacuum.2012.05.028
- M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. W. Nam, and J.-U. Park, High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures, Nano Lett., 13, 2814-2821 (2013). https://doi.org/10.1021/nl401070p
- J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T.-S. Kim, D. Lee, and S. H. Ko, Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-sssisted joining for a flexible touch-panel application, Adv. Funct. Mater., 23, 4171-4176 (2013). https://doi.org/10.1002/adfm.201203802
- D. Yoo, J. Kim, and J. H. Kim, Direct synthesis of highly conductive PEDOT:PSS/graphene composites and their applications in energy harvesting systems, Nano Res., DOI: 10.1007/s12274-014-0433-z.
- Y.-K. Kim and D.-H. Min, Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode, Langmuir, 25, 11302-11306 (2009). https://doi.org/10.1021/la9029744
- S. De, P. E. Lyons, S. Sorel, E. M. Doherty, P. J. King, W. J. Blau, P. N. Nirmalraj, J. J. Boland, V. Scardaci, J. Joimel, and J. N. Coleman, Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites, ACS Nano, 3, 714-720 (2009). https://doi.org/10.1021/nn800858w
- X. Ho, H. Lu, W. Liu, J. N. Tey, C. K. Cheng, E. Kok, and J. Wei, Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films, J. Mater. Res., 28, 620-626 (2013). https://doi.org/10.1557/jmr.2012.399
Cited by
- 라만 분광실험을 이용한 전기전도성 PEDOT:PSS 박막에 대한 이온성 액체의 영향 연구 vol.42, pp.1, 2018, https://doi.org/10.7317/pk.2018.42.1.80
- 은 박막이 첨가된 전기방사법으로 제작한 PCL/MWCNTs 나노섬유의 전기적 특성 vol.31, pp.4, 2014, https://doi.org/10.4313/jkem.2018.31.4.238
- 투명 전극을 적용한 유리 유전체 커패시티브 커플링 무선 전력 전송에 관한 연구 vol.23, pp.4, 2018, https://doi.org/10.6113/tkpe.2018.23.4.286
- 공정압력이 SiO2 버퍼층을 갖는 PES 기판위에 증착한 ITZO 박막의 전기적 및 광학적 특성에 미치는 영향 vol.14, pp.5, 2014, https://doi.org/10.13067/jkiecs.2019.14.5.887
- Review: Sensors for Biosignal/Health Monitoring in Electronic Skin vol.13, pp.15, 2021, https://doi.org/10.3390/polym13152478