DOI QR코드

DOI QR Code

Preparation and Characterization of Polypropylene Non-woven Fabrics Prepared by Melt-blown Spinning for Filtration Membranes

  • Chu, Kong-Hee (Department of BIN Fusion Technology, Chonbuk National University) ;
  • Park, Mira (Department of BIN Fusion Technology, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of BIN Fusion Technology, Chonbuk National University) ;
  • Jin, Fan-Long (Department of Polymer Materials, Jilin Institute of Chemical Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2014.01.27
  • Accepted : 2014.02.14
  • Published : 2014.06.20

Abstract

Keywords

Experimental Section

Materials. The PP used in this study (purchased from PolyMirae Co. of Korea), possessed a melt index of 900-1100 g/min and density of 0.9 g/cm3. The PP non-woven fabrics were prepared using a melt-blown spinning techni-que under an extruder inlet/outlet temperature of 120 °C/230 °C, through-put of 0.1 g/min, air pressure of 0.3 kg/cm2, and die to collector distance of 150 mm.

Heat and Plasma Treatments. The PP non-woven fabrics were heat (densification) treated using a calendar at a pressure of 60 psi, line speed of 4 m/min, press spacing of 0.02 mm, and roll temperature of 120 °C. The PP non-woven fabrics were plasma treated for 5 min under 100% oxygen at a total gas flow rate of 300 cm3/min.

Characterization and Measurements. The surfaces of the non-woven fabrics were investigated using a scanning electron microscope (HITACHI S-3000N).

The tensile strength test was conducted using an Instron mechanical tester (LRIOK model) at a tensile speed of 20 mm/min. All of the mechanical property values were obtain-ed as the average of five experimental values.

The contact angle of the PP non-woven fabrics was mea-sured using a contact angle tester (Dataphysics DCTA 21 model) with de-ionized water as the wetting liquid.

The water flux of the non-woven fabrics was measured using a permeation cell tester (Amicon Model 8050) at pre-ssure of 1 bar and temperature of 30 °C.

The average pore size of the non-woven fabrics was mea-sured using a capillary flow porometer (Porous materials, Inc. CFP-1200-AEL).

The particle removal efficiency of the PP non-woven fabrics was measured using a particle efficiency tester with ISO 12103-A standard particle at a concentration of 3 ppm and flow rate of 11.4 L/min.

References

  1. Zhang, C.; Jin, J.; Zhao, J.; Jiang, W.; Yin, J. Colloid Surface B 2013, 102, 45. https://doi.org/10.1016/j.colsurfb.2012.08.007
  2. Li, R.; Wang, H.; Wang, W.; Ye, Y. Radiat. Phys. Chem. 2013, 88, 65. https://doi.org/10.1016/j.radphyschem.2013.03.013
  3. Li, R.; Wang, H.; Wang, W.; Ye, Y. Radiat. Phys. Chem. 2013, 91, 132. https://doi.org/10.1016/j.radphyschem.2013.05.034
  4. Shin, H. K.; Chung, Y. S.; Kim, H. Y.; Jin, F. L.; Park, S. J. Bull. Korean Chem. Soc. 2013, 34, 2441. https://doi.org/10.5012/bkcs.2013.34.8.2441
  5. Park, M. R.; Kim, H. Y.; Jin, F. L.; Lee, S. Y.; Choi, H. S.; Park, S. J. J. Ind. Eng. Chem. 2014, 20, 179. https://doi.org/10.1016/j.jiec.2013.04.010
  6. Mehmood, T.; Kaynak, A.; Dai, X. J.; Kouzani, A.; Magniez, K.; Celis, D. R.; Hurren, C. J.; Plessis, J. Mater. Chem. Phys. 2014, 143, 668. https://doi.org/10.1016/j.matchemphys.2013.09.052
  7. Man, W. S.; Kan, C. W.; Ng, S. P. Vacuum 2014, 99, 7. https://doi.org/10.1016/j.vacuum.2013.04.018
  8. Zheng, X.; Chen, G.; Zhang, Z.; Beem, J.; Massey, S.; Huang, J. Surf. Coat. Tech. 2013, 22, 123.
  9. Salem, T.; Pleul, D.; Nitschke, M.; Muller, M.; Simon, F. Appl. Surf. Sci. 2013, 264, 286. https://doi.org/10.1016/j.apsusc.2012.10.014
  10. Kim, S.; Choi, H. S.; Jin, F. L.; Park, S. J. Bull. Korean Chem. Soc. 2014, in press.
  11. Shin, H. K.; Chung, Y. S.; Park, M.; Kim, H. Y.; Jin, F. L.; Park, S. J. J. Ind. Eng. Chem. 2014, in press.
  12. Bang, H. J.; Kim, H. Y.; Jin, F. L.; Park, S. J. J. Ind. Eng. Chem. 2011, 17, 805. https://doi.org/10.1016/j.jiec.2011.05.021
  13. Cerkez, I.; Worley, S. D.; Broughton, R. M.; Huang, T. S. React. Funct. Polym. 2013, 73, 1412. https://doi.org/10.1016/j.reactfunctpolym.2013.07.016
  14. Zhou, C.; Tan, D. H.; Janakiraman, A. P.; Kumar, S. Chem. Eng. Sci. 2011, 66, 4172. https://doi.org/10.1016/j.ces.2011.05.051
  15. Krucinska, I.; Surma, B.; Chrzanowski, M.; Skrzetuska, E.; Puchalski, M. J. Appl. Polym. Sci. 2013, 127, 869. https://doi.org/10.1002/app.37834
  16. Kan, C. W.; Lam, C. F.; Chan, C. K.; Ng, S. P. Carbohyd. Polym. 2014, 102, 167. https://doi.org/10.1016/j.carbpol.2013.11.015
  17. Kan, C. W.; Yuen, C. W. M.; Hung, O. N. Surf. Coat. Tech. 2013, 228, 588. https://doi.org/10.1016/j.surfcoat.2011.10.062
  18. Nemat-Nasser, S.; Tobita, Y. Mech. Mater. 1982, 1, 43. https://doi.org/10.1016/0167-6636(82)90023-0
  19. Hirata, Y.; Hayata, K.; Maeda, T. J. Am. Ceram. Soc. 2004, 87, 996. https://doi.org/10.1111/j.1551-2916.2004.00996.x
  20. Li, Y.; Moyo, S.; Ding, Z.; Shan, Z.; Qiu, Y. Ind. Crop. Prod. 2013, 51, 299. https://doi.org/10.1016/j.indcrop.2013.09.028
  21. Yu, H. Y.; Liu, L. Q.; Tang, Z. Q.; Yan, M. G.; Gu, J. S.; Wei, X. W. J. Membrane Sci. 2008, 311, 216. https://doi.org/10.1016/j.memsci.2007.12.016
  22. Jaleha, B.; Parvin, P.; Wanichapichart, P.; Saffar, A. P.; Reyhani, A. Appl. Surf. Sci. 2010, 257, 1655. https://doi.org/10.1016/j.apsusc.2010.08.117
  23. Wei, Q. F. Mater. Charact. 2004, 52, 231. https://doi.org/10.1016/j.matchar.2004.05.003
  24. Fonseca, V. M.; Fernandes, V. J.; Carvalho, L. H. J. Appl. Polym. Sci. 2005, 94, 1209.
  25. Lee, G.; Han, D.; Han, M. C.; Han, C. G.; Son, H. J. Constr. Build. Mater. 2012, 34, 313. https://doi.org/10.1016/j.conbuildmat.2012.02.015
  26. Kosaraju, P. B.; Sirkar, K. K. J. Membrane Sci. 2008, 321, 155. https://doi.org/10.1016/j.memsci.2008.04.057

Cited by

  1. Study on structure and property of PP/TPU melt-blown nonwovens pp.1754-2340, 2018, https://doi.org/10.1080/00405000.2018.1485461
  2. Application of 4T-PET fibers/nonwovens for leucocyte filters pp.1530-8057, 2019, https://doi.org/10.1177/1528083718792916
  3. Superhydrophobic PCL/PS composite nanofibrous membranes prepared through solution blow spinning with an airbrush for oil adsorption pp.00323888, 2019, https://doi.org/10.1002/pen.24898
  4. Thermal and curl properties of PET/PP blend fibres compatibilized with EAG ternary copolymer vol.41, pp.4, 2014, https://doi.org/10.1007/s12034-018-1621-3
  5. 다층구조의 고효율 수처리용 필터 제조 vol.57, pp.6, 2014, https://doi.org/10.9713/kcer.2019.57.6.841
  6. Solution Blow Spinning of Polylactic Acid to Prepare Fibrous Oil Adsorbents Through Morphology Optimization with Response Surface Methodology vol.28, pp.3, 2020, https://doi.org/10.1007/s10924-019-01617-6
  7. Research progress on the cleaning and regeneration of PM2.5 filter media vol.57, pp.None, 2014, https://doi.org/10.1016/j.partic.2020.11.006