References
- Barragan, P., Bouvier, J. L., Roquebert, P. O., Macaluso, G., Commeau, P., Comet, B., Lafont, A., Camoin, L., Walter, U. and Eigenthaler, M. (2003) Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter. Cardiovasc. Interv. 59, 295-302. https://doi.org/10.1002/ccd.10497
- Bell, R. L., Kennerly, D. A., Stanford, N. and Majerus, P. W. (1979) Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. U.S.A. 76, 3238-3241. https://doi.org/10.1073/pnas.76.7.3238
- Butt, E., Abel, K., Krieger, M., Palm, D., Hoppe, V., Hoppe, J. and Walter, U. (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 269, 14509-14517.
- Cavallini, L., Coassin, M., Borean, A. and Alexandre, A. (1996) Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J. Biol. Chem. 271, 5545-5551. https://doi.org/10.1074/jbc.271.10.5545
- Cho, H. J., Cho, J. Y., Rhee, M. H. and Park, H. J. (2007) Cordycepin (3'-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. Eur. J. Pharmacol. 558, 43-51. https://doi.org/10.1016/j.ejphar.2006.11.073
- Cho, H. J., Kang, H. J., Kim, Y. J., Lee, D. H., Kwon, H. W., Kim, Y. Y. and Park, H. J. (2012) Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP-dependent manner. Blood Coagul. Fibrinolysis 23, 629-635. https://doi.org/10.1097/MBC.0b013e3283570846
- Cipollone, F., Patrignani, P., Greco, A., Panara, M. R., Padovano, R., Cuccurullo, F., Patrono, C., Rebuzzi, A. G., Liuzzo, G., Quaranta, G. and Maseri, A. (1997) Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation 6, 1109-1116.
- Cunningham, K. G., Hutchinson, S. A., Manson, W. and Spring, F. S. (1951) Cordycepin: A metabolic product from cultures Cordyceps militaris Link. Part I. Isolation and characterization. J. Chem. Soc. 2, 2299-2300.
- Halbrugge, M. and Walter, U. (1989) Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur. J. Biochem. 185, 41-50. https://doi.org/10.1111/j.1432-1033.1989.tb15079.x
- Halbrugge, M., Friedrich, C., Eigenthaler, M., Schanzenbacher, P. and Walter, U. (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J. Biol. Chem. 265, 3088-3093.
- Haslam, R. J., Davidson, M. M., Desjardins, J. V. (1978) Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP. Biochem. J. 176, 83-95. https://doi.org/10.1042/bj1760083
- Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. (2002) Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. Br. J. Haematol. 117, 664-675. https://doi.org/10.1046/j.1365-2141.2002.03479.x
- Kaibuchi, K., Sano, K., Hoshijima, M., Takai, Y. and Nishizuka, Y. (1982) Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium 3, 323-335. https://doi.org/10.1016/0143-4160(82)90020-3
-
Lee, D. H., Kim, H. H., Cho, H. J., Bae, J. S., Yu, Y. B. and Park, H. J. (2014) Antiplatelet effects of caffeic acid due to
$Ca^{2+}$ mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J. Atheroscler. Thromb. 21, 24-37. - Londos, C., Wolff, J. (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 74, 5482-5486. https://doi.org/10.1073/pnas.74.12.5482
- Mauco, G., Fauvel, J., Chap, H., and Douste-Blazy, L., (1984) Studies on enzymes related to diacylglycerol production in activated platelets. II. Subcellular distribution, enzymatic properties and positional specificity of diacylglycerol- and monoacylglycerol-lipases. Biochim. Biophys. Acta 796, 169-177. https://doi.org/10.1016/0005-2760(84)90345-X
-
Menshikov, Myu., Ivanova, K., Schaefer, M., Drummer, C. and Gerzer, R. (1993) Influence of the cGMP analog 8-PCPT-cGMP on agonistinduced increases in cytosolic ionized
$Ca^{2+}$ and on aggregation of human platelets. Eur. J. Pharmacol. 245, 281-284. https://doi.org/10.1016/0922-4106(93)90108-L - Moriyama, T., Wada, K., Oki, M., Matsuura, T. and Kitom, M. (1994) The mechanism of arachidonic acid release in collagen-activated human platelets. Biosci. Biotechnol. Biochem. 58, 93-98. https://doi.org/10.1271/bbb.58.93
- Ng, T. B. and Wang, H. X. (2005) Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57, 1509-1519. https://doi.org/10.1211/jpp.57.12.0001
-
Nishikawa, M., Tanaka, T. and Hidaka, H. (1980)
$Ca^{2+}$ -calmodulin dependent phosphorylation and platelet secretion. Nature 287, 863-865. https://doi.org/10.1038/287863a0 - Ok, W. J., Cho, H. J., Kim, H. H., Lee, D. H., Kang, H. Y., Kwon, H. W., Rhee, M. H., Kim, M. and Park, H. J. (2012) Epigallocatechin-3- gallate has an anti-platelet effect in a cyclic AMP-dependent man ner. J. Atheroscler. Thromb. 19, 337-348. https://doi.org/10.5551/jat.10363
-
Quinton, T. M. and Dean, W. L. (1992) Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-trisphosphate receptor inhibits
$Ca^{2+}$ release from platelet membranes. Biochem. Biophys. Res. Commun. 184, 893-899. https://doi.org/10.1016/0006-291X(92)90675-B - Patrono, C. (1994) Aspirin as an antiplatelet drug. N. Engl. J. Med. 330, 1287-1294. https://doi.org/10.1056/NEJM199405053301808
- Schaeffer, J. and Blaustein, M. P. (1989) Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium 10, 101-113. https://doi.org/10.1016/0143-4160(89)90050-X
- Schwartz, S. M., Heinmark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70, 1177-1209.
- Schwarz, U. R., Walter, U. and Eigenthaler, M. (2001) Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 62, 1153-1161. https://doi.org/10.1016/S0006-2952(01)00760-2
- Walter, U. and Gambaryan, S. (2009) cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handb. Exp. Pharmacol. 191, 533-548. https://doi.org/10.1007/978-3-540-68964-5_23
- Wonerow, P., Obergfell, A., Wilde, J. I., Bobe, R., Asazuma, N., Brdicka, T., Leo, A., Schraven, B., Horejsi, V., Shattil, S. J. and Watson, S. P. (2002) Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets. Biochem. J. 364, 755-765. https://doi.org/10.1042/bj20020128
- Yue, G. G., Lau, C. B., Fung, K. P., Leung, P. C. and Ko, W. H. (2008) Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J. Ethnopharmacol. 117, 92-101. https://doi.org/10.1016/j.jep.2008.01.030
Cited by
- Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.021
- Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model vol.2017, 2017, https://doi.org/10.1155/2017/8474703
- Post-ischemic treatment of WIB801C, standardized Cordyceps extract, reduces cerebral ischemic injury via inhibition of inflammatory cell migration vol.186, 2016, https://doi.org/10.1016/j.jep.2016.03.052
- Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa vol.23, pp.1, 2015, https://doi.org/10.4062/biomolther.2014.086
- Antiproliferative and Apoptosis-Inducing Activities of 4-Isopropyl-2,6-bis(1-phenylethyl)phenol Isolated from Butanol Fraction ofCordyceps bassiana vol.2015, 2015, https://doi.org/10.1155/2015/739874
- Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine vol.194, 2016, https://doi.org/10.1016/j.jep.2016.10.001
- Antiplatelet Effects of Cordycepin-Enriched WIB-801CE from Cordyceps militaris: Involvement of Thromboxane A2,Serotonin, Cyclooxygenase-1, Thromboxane A2 Synthase,Cytosolic Phospholipase A2 vol.22, pp.4, 2016, https://doi.org/10.15616/BSL.2016.22.4.127
- Cordycepin-enriched WIB-801C from Cordyceps militaris improves functional recovery by attenuating blood-spinal cord barrier disruption after spinal cord injury vol.203, 2017, https://doi.org/10.1016/j.jep.2017.03.047
- Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2) vol.47, pp.1, 2014, https://doi.org/10.1080/21691401.2019.1629952
- FDY003의 항산화활성 및 표준화 연구 vol.40, pp.6, 2019, https://doi.org/10.22246/jikm.2019.40.6.1112
- Combined Therapy with Traditional Chinese Medicine and Antiplatelet Drugs for Ischemic Heart Disease: Mechanism, Efficacy, and Safety vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9956248