DOI QR코드

DOI QR Code

Harnessing of Programmed Necrosis for Fighting against Cancers

  • Received : 2014.04.22
  • Accepted : 2014.05.12
  • Published : 2014.05.31

Abstract

Chemotherapy has long been considered as one of useful strategies for cancer treatment. It is primarily based on the apoptosis that can selectively kill cancer cells. However, cancer cells can progressively develop an acquired resistance to apoptotic cell death, rendering refractory to chemo- and radiotherapies. Although the mechanism by which cells attained resistance to drug remains to be clarified, it might be caused by either pumping out of them or interfering with apoptotic signal cascades in response to cancer drugs. In case that cancer cells are defective in some part of apoptotic machinery by repeated exposure to anticancer drugs, alternative cell death mechanistically distinct from apoptosis could be adopted to remove cancer cells refractory to apoptosis-inducing agents. This review will mainly deal with harnessing of necrotic cell death, specifically, programmed necrosis and practical uses. Here, we begin with various defects of apoptotic death machinery in cancer cells, and then provide new perspective on programmed necrosis as an alternative anticancer approach.

Keywords

References

  1. Amaravadi, R. K. and Thompson, C. B. (2007) The roles of therapyinduced autophagy and necrosis in cancer treatment. Clin. Cancer Res. 13, 7271-7279. https://doi.org/10.1158/1078-0432.CCR-07-1595
  2. Bai, X., Cerimele, F., Ushio-Fukai, M., Waqas, M., Campbell, P. M., Govindarajan, B., Der, C. J., Battle, T., Frank, D. A., Ye, K., Murad, E., Dubiel, W., Soff, G. and Arbiser, J. L. (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J. Biol. Chem. 278, 35501-35507. https://doi.org/10.1074/jbc.M302967200
  3. Basu, A. and Haldar, S. (1998) The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol. Hum. Reprod. 4, 1099-1109. https://doi.org/10.1093/molehr/4.12.1099
  4. Bown, S. G., Rogowska, A. Z., Whitelaw, D. E., Lees, W. R., Lovat, L. B., Ripley, P., Jones, L., Wyld, P., Gillams, A. and Hatfield, A. W. (2002) Photodynamic therapy for cancer of the pancreas. Gut 50, 549-557. https://doi.org/10.1136/gut.50.4.549
  5. Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P. and Kroemer, G. (2005) Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25, 1025-1040. https://doi.org/10.1128/MCB.25.3.1025-1040.2005
  6. Burman, C. and Ktistakis, N. T. (2010) Autophagosome formation in mammalian cells. Semin. Immunopathol. 32, 397-413. https://doi.org/10.1007/s00281-010-0222-z
  7. Buzea, C., Pacheco, II and Robbie, K. (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17-71.
  8. Carew, J. S., Nawrocki, S. T., Kahue, C. N., Zhang, H., Yang, C., Chung, L., Houghton, J. A., Huang, P., Giles, F. J. and Cleveland, J. L. (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Ablmediated drug resistance. Blood 110, 313-322. https://doi.org/10.1182/blood-2006-10-050260
  9. Castano, A. P., Mroz, P. and Hamblin, M. R. (2006) Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535-545. https://doi.org/10.1038/nrc1894
  10. Chen, S. Y., Chiu, L. Y., Maa, M. C., Wang, J. S., Chien, C. L. and Lin, W. W. (2011) zVAD-induced autophagic cell death requires c-Srcdependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7, 217-228. https://doi.org/10.4161/auto.7.2.14212
  11. Cho, D. H., Jo, Y. K., Hwang, J. J., Lee, Y. M., Roh, S. A. and Kim, J. C. (2009a) Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett. 274, 95-100. https://doi.org/10.1016/j.canlet.2008.09.004
  12. Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. (2009b) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virusinduced inflammation. Cell 137, 1112-1123. https://doi.org/10.1016/j.cell.2009.05.037
  13. Christofferson, D. E., Li, Y., Hitomi, J., Zhou, W., Upperman, C., Zhu, H., Gerber, S. A., Gygi, S. and Yuan, J. (2012) A novel role for RIP1 kinase in mediating TNFalpha production. Cell Death Dis. 3, e320. https://doi.org/10.1038/cddis.2012.64
  14. Christofferson, D. E. and Yuan, J. (2010) Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263-268. https://doi.org/10.1016/j.ceb.2009.12.003
  15. Deng, Y., Lin, Y. and Wu, X. (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 16, 33-45. https://doi.org/10.1101/gad.949602
  16. Dy, G. K. and Adjei, A. A. (2002) Novel targets for lung cancer therapy: part I. J. Clin. Oncol. 20, 2881-2894. https://doi.org/10.1200/JCO.2002.11.145
  17. Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
  18. Espert, L., Denizot, M., Grimaldi, M., Robert-Hebmann, V., Gay, B., Varbanov, M., Codogno, P. and Biard-Piechaczyk, M. (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116, 2161-2172. https://doi.org/10.1172/JCI26185
  19. Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Hacker, G. and Leverkus, M. (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463. https://doi.org/10.1016/j.molcel.2011.06.011
  20. Galluzzi, L., Kepp, O. and Kroemer, G. (2009) RIP kinases initiate programmed necrosis. J. Mol. Cell Biol. 1, 8-10. https://doi.org/10.1093/jmcb/mjp007
  21. Gaymes, T. J., Shall, S., MacPherson, L. J., Twine, N. A., Lea, N. C., Farzaneh, F. and Mufti, G. J. (2009) Inhibitors of poly ADP-ribose polymerase (PARP) induce apoptosis of myeloid leukemic cells: potential for therapy of myeloid leukemia and myelodysplastic syndromes. Haematologica 94, 638-646. https://doi.org/10.3324/haematol.2008.001933
  22. Gordy, C. and He, Y. W. (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3, 17-27. https://doi.org/10.1007/s13238-011-1127-x
  23. Gottesman, M. M. (1993) How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 53, 747-754.
  24. Gottesman, M. M. (2002) Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615-627. https://doi.org/10.1146/annurev.med.53.082901.103929
  25. Gozuacik, D. and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906. https://doi.org/10.1038/sj.onc.1207521
  26. Hammerova, J., Uldrijan, S., Taborska, E., Vaculova, A. H. and Slaninova, I. (2012) Necroptosis modulated by autophagy is a predominant form of melanoma cell death induced by sanguilutine. Biol. Chem. 393, 647-658.
  27. He, M. X. and He, Y. W. (2013) A role for c-FLIP(L) in the regulation of apoptosis, autophagy, and necroptosis in T lymphocytes. Cell Death Differ. 20, 188-197. https://doi.org/10.1038/cdd.2012.148
  28. Hou, Y. J., Dong, L. W., Tan, Y. X., Yang, G. Z., Pan, Y. F., Li, Z., Tang, L., Wang, M., Wang, Q. and Wang, H. Y. (2011) Inhibition of active autophagy induces apoptosis and increases chemosensitivity in cholangiocarcinoma. Lab. Invest. 91, 1146-1157. https://doi.org/10.1038/labinvest.2011.97
  29. Huang, C., Luo, Y., Zhao, J., Yang, F., Zhao, H., Fan, W. and Ge, P. (2013) Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS One 8, e66326. https://doi.org/10.1371/journal.pone.0066326
  30. Huang, X., Dong, Y., Bey, E. A., Kilgore, J. A., Bair, J. S., Li, L. S., Patel, M., Parkinson, E. I., Wang, Y., Williams, N. S., Gao, J., Hergenrother, P. J. and Boothman, D. A. (2012) An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res. 72, 3038-3047. https://doi.org/10.1158/0008-5472.CAN-11-3135
  31. Hurst, D. R. and Welch, D. R. (2011) Metastasis suppressor genes at the interface between the environment and tumor cell growth. Int. Rev. Cell Mol. Biol. 286, 107-180. https://doi.org/10.1016/B978-0-12-385859-7.00003-3
  32. Imre, G., Larisch, S. and Rajalingam, K. (2011) Ripoptosome: a novel IAP-regulated cell death-signalling platform. J. Mol. Cell Biol. 3, 324-326. https://doi.org/10.1093/jmcb/mjr034
  33. Jain, M. V., Paczulla, A. M., Klonisch, T., Dimgba, F. N., Rao, S. B., Roberg, K., Schweizer, F., Lengerke, C., Davoodpour, P., Palicharla, V. R., Maddika, S. and Los, M. (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J. Cell. Mol. Med. 17, 12-29. https://doi.org/10.1111/jcmm.12001
  34. Jha, P., Matta, B., Lyzogubov, V., Tytarenko, R., Bora, P. S. and Bora, N. S. (2007) Crucial role of apoptosis in the resolution of experimental autoimmune anterior uveitis. Invest. Ophthalmol. Vis. Sci. 48, 5091-5100. https://doi.org/10.1167/iovs.07-0651
  35. Kaczmarek, A., Vandenabeele, P. and Krysko, D. V. (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209-223. https://doi.org/10.1016/j.immuni.2013.02.003
  36. Kang, R., Zeh, H. J., Lotze, M. T. and Tang, D. (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18, 571-580. https://doi.org/10.1038/cdd.2010.191
  37. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. and Kroemer, G. (2011) Cell death assays for drug discovery. Nat. Rev. Drug Discov. 10, 221-237. https://doi.org/10.1038/nrd3373
  38. Kim, A. D., Kang, K. A., Kim, H. S., Kim, D. H., Choi, Y. H., Lee, S. J., Kim, H. S. and Hyun, J. W. (2013) A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 4, e750. https://doi.org/10.1038/cddis.2013.273
  39. Koster, R., Timmer-Bosscha, H., Bischoff, R., Gietema, J. A. and de Jong, S. (2011) Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis. 2, e148. https://doi.org/10.1038/cddis.2011.33
  40. Kumar, D., Shankar, S. and Srivastava, R. K. (2013) Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms. Mol. Cancer 12, 171. https://doi.org/10.1186/1476-4598-12-171
  41. Levine, B., Mizushima, N. and Virgin, H. W. (2011) Autophagy in immunity and inflammation. Nature 469, 323-335. https://doi.org/10.1038/nature09782
  42. Li, Y. Z., Li, C. J., Pinto, A. V. and Pardee, A. B. (1999) Release of mitochondrial cytochrome C in both apoptosis and necrosis induced by beta-lapachone in human carcinoma cells. Mol. Med. 5, 232-239.
  43. Linkermann, A., Brasen, J. H., De Zen, F., Weinlich, R., Schwendener, R. A., Green, D. R., Kunzendorf, U. and Krautwald, S. (2012) Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock. Mol. Med. 18, 577-586.
  44. Lowe, S. W. and Lin, A. W. (2000) Apoptosis in cancer. Carcinogenesis 21, 485-495. https://doi.org/10.1093/carcin/21.3.485
  45. Markert, C. L. (1968) Neoplasia: a disease of cell differentiation. Cancer Res. 28, 1908-1914.
  46. Martinez, R., Setien, F., Voelter, C., Casado, S., Quesada, M. P., Schackert, G. and Esteller, M. (2007) CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 28, 1264-1268. https://doi.org/10.1093/carcin/bgm014
  47. Mizushima, N. (2007) Autophagy: process and function. Genes Dev. 21, 2861-2873. https://doi.org/10.1101/gad.1599207
  48. Mohr, A., Zwacka, R. M., Jarmy, G., Buneker, C., Schrezenmeier, H., Dohner, K., Beltinger, C., Wiesneth, M., Debatin, K. M. and Stahnke, K. (2005) Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene 24, 2421-2429. https://doi.org/10.1038/sj.onc.1208432
  49. Moquin, D. M., McQuade, T. and Chan, F. K. (2013) CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8, e76841. https://doi.org/10.1371/journal.pone.0076841
  50. Moriwaki, K. and Chan, F. K. (2013) RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 27, 1640-1649. https://doi.org/10.1101/gad.223321.113
  51. Moujalled, D. M., Cook, W. D., Okamoto, T., Murphy, J., Lawlor, K. E., Vince, J. E. and Vaux, D. L. (2013) TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Dis. 4, e465. https://doi.org/10.1038/cddis.2012.201
  52. Muzes, G. and Sipos, F. (2012) Anti-tumor immunity, autophagy and chemotherapy. World J. Gastroenterol. 18, 6537-6540. https://doi.org/10.3748/wjg.v18.i45.6537
  53. Nakajima, A., Komazawa-Sakon, S., Takekawa, M., Sasazuki, T., Yeh, W. C., Yagita, H., Okumura, K. and Nakano, H. (2006) An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J. 25, 5549-5559. https://doi.org/10.1038/sj.emboj.7601423
  54. Nelson, S. M., Ferguson, L. R. and Denny, W. A. (2004) DNA and the chromosome - varied targets for chemotherapy. Cell Chromosome 3, 2. https://doi.org/10.1186/1475-9268-3-2
  55. Nordgren, M., Wang, B., Apanasets, O. and Fransen, M. (2013) Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front. Physiol. 4, 145.
  56. Okada, M., Adachi, S., Imai, T., Watanabe, K., Toyokuni, S. Y., Ueno, M., Zervos, A. S., Kroemer, G. and Nakahata, T. (2004) A novel mechanism for imatinib mesylate-induced cell death of BCR-ABLpositive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 103, 2299-2307. https://doi.org/10.1182/blood-2003-05-1605
  57. Orrenius, S., Nicotera, P. and Zhivotovsky, B. (2011) Cell death mechanisms and their implications in toxicology. Toxicol. Sci. 119, 3-19. https://doi.org/10.1093/toxsci/kfq268
  58. Qian, W., Liu, J., Jin, J., Ni, W. and Xu, W. (2007) Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res. 31, 329-339. https://doi.org/10.1016/j.leukres.2006.06.021
  59. Rikiishi, H. (2012) Novel Insights into the Interplay between Apoptosis and Autophagy. Int. J. Cell. Biol. 2012, 317645.
  60. Safa, A. R. (2012) c-FLIP, a master anti-apoptotic regulator. Exp. Oncol. 34, 176-184.
  61. Safa, A. R. and Pollok, K. E. (2011) Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers (Basel) 3, 1639-1671. https://doi.org/10.3390/cancers3021639
  62. Salomon, A. R., Voehringer, D. W., Herzenberg, L. A. and Khosla, C. (2000) Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPase. Proc. Natl. Acad. Sci. U.S.A. 97, 14766-14771. https://doi.org/10.1073/pnas.97.26.14766
  63. Shen, S., Kepp, O., Martins, I., Vitale, I., Souquere, S., Castedo, M., Pierron, G. and Kroemer, G. (2010) Defective autophagy associated with LC3 puncta in epothilone-resistant cancer cells. Cell Cycle 9, 377-383. https://doi.org/10.4161/cc.9.2.10468
  64. Speirs, C. K., Hwang, M., Kim, S., Li, W., Chang, S., Varki, V., Mitchell, L., Schleicher, S. and Lu, B. (2011) Harnessing the cell death pathway for targeted cancer treatment. Am. J. Cancer Res. 1, 43-61.
  65. Strasser, A., O'Connor, L. and Dixit, V. M. (2000) Apoptosis signaling. Annu. Rev. Biochem. 69, 217-245. https://doi.org/10.1146/annurev.biochem.69.1.217
  66. Sun, X., Li, Y., Li, W., Zhang, B., Wang, A. J., Sun, J., Mikule, K., Jiang, Z. and Li, C. J. (2006) Selective induction of necrotic cell death in cancer cells by beta-lapachone through activation of DNA damage response pathway. Cell Cycle 5, 2029-2035. https://doi.org/10.4161/cc.5.17.3312
  67. Tagliarino, C., Pink, J. J., Dubyak, G. R., Nieminen, A. L. and Boothman, D. A. (2001) Calcium is a key signaling molecule in betalapachone- mediated cell death. J. Biol. Chem. 276, 19150-19159. https://doi.org/10.1074/jbc.M100730200
  68. Tsuda, H., Ning, Z., Yamaguchi, Y. and Suzuki, N. (2012) Programmed cell death and its possible relationship with periodontal disease. J. Oral Sci. 54, 137-149. https://doi.org/10.2334/josnusd.54.137
  69. Vanden Berghe, T., Kalai, M., van Loo, G., Declercq, W. and Vandenabeele, P. (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J. Biol. Chem. 278, 5622-5629. https://doi.org/10.1074/jbc.M208925200
  70. Vandenabeele, P., Declercq, W., Van Herreweghe, F. and Vanden Berghe, T. (2010) The role of the kinases RIP1 and RIP3 in TNFinduced necrosis. Sci. Signal. 3, re4.
  71. Wang, H., Lu, Q., Cheng, S., Wang, X. and Zhang, H. (2013) Autopha gy activity contributes to programmed cell death in Caenorhabditis elegans. Autophagy 9, 1975-1982. https://doi.org/10.4161/auto.26152
  72. Wang, X. and Weaver, D. T. (2011) The ups and downs of DNA repair biomarkers for PARP inhibitor therapies. Am. J. Cancer Res. 1, 301-327.
  73. Wu, Y. T., Tan, H. L., Huang, Q., Sun, X. J., Zhu, X. and Shen, H. M. (2011) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ. 18, 26-37. https://doi.org/10.1038/cdd.2010.72
  74. Yamazaki, T., Hannani, D., Poirier-Colame, V., Ladoire, S., Locher, C., Sistigu, A., Prada, N., Adjemian, S., Catani, J. P., Freudenberg, M., Galanos, C., Andre, F., Kroemer, G. and Zitvogel, L. (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69-78. https://doi.org/10.1038/cdd.2013.72
  75. Yang, Z. and Klionsky, D. J. (2010) Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814-822. https://doi.org/10.1038/ncb0910-814
  76. Yang, Z. J., Chee, C. E., Huang, S. and Sinicrope, F. A. (2011) The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10, 1533-1541. https://doi.org/10.1158/1535-7163.MCT-11-0047
  77. Ye, Y. C., Wang, H. J., Chen, L., Liu, W. W., Tashiro, S., Onodera, S., Xia, M. Y. and Ikejima, T. (2013) Negatively-regulated necroptosis by autophagy required caspase-6 activation in TNFalpha-treated murine fibrosarcoma L929 cells. Int. Immunopharmacol. 17, 548-555. https://doi.org/10.1016/j.intimp.2013.05.009
  78. Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E. H. and Lenardo, M. J. (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500-1502. https://doi.org/10.1126/science.1096645
  79. Zobalova, R., McDermott, L., Stantic, M., Prokopova, K., Dong, L. F. and Neuzil, J. (2008) CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP. Biochem. Biophys. Res. Commun. 373, 567-571. https://doi.org/10.1016/j.bbrc.2008.06.073
  80. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. and Thompson, C. B. (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272-1282. https://doi.org/10.1101/gad.1199904

Cited by

  1. Selective anticancer activity of the novel thiobenzanilide 63T against human lung adenocarcinoma cells vol.37, 2016, https://doi.org/10.1016/j.tiv.2016.09.017
  2. Design and synthesis of novel tetrandrine derivatives as potential anti-tumor agents against human hepatocellular carcinoma vol.127, 2017, https://doi.org/10.1016/j.ejmech.2017.01.008
  3. The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells vol.360, pp.2, 2015, https://doi.org/10.1016/j.canlet.2015.02.012
  4. Unveiling the principle of microRNA-mediated redundancy in cellular pathway regulation vol.12, pp.3, 2015, https://doi.org/10.1080/15476286.2015.1017238
  5. Programmed Cell Death, from a Cancer Perspective: An Overview vol.22, pp.3, 2018, https://doi.org/10.1007/s40291-018-0329-9
  6. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells vol.18, pp.2, 2014, https://doi.org/10.2174/1389202917666160803150639
  7. Coriolus versicolor‐derived protein‐bound polysaccharides trigger the caspase‐independent cell death pathway in amelanotic but not melanotic melanoma cells vol.34, pp.1, 2014, https://doi.org/10.1002/ptr.6513
  8. An Unusual Pathway of Mitoptosis Found in Ehrlich Carcinoma Cells vol.494, pp.1, 2014, https://doi.org/10.1134/s0012496620050063
  9. Identification of a Noncanonical Necrotic Cell Death Triggered via Enhanced Proteolysis by a Novel Sapogenol Derivative vol.33, pp.11, 2014, https://doi.org/10.1021/acs.chemrestox.0c00339
  10. Peptides in Colorectal Cancer: Current State of Knowledge vol.75, pp.4, 2014, https://doi.org/10.1007/s11130-020-00856-6
  11. Targeting Drug Chemo-Resistance in Cancer Using Natural Products vol.9, pp.10, 2014, https://doi.org/10.3390/biomedicines9101353