References
- Andrews, D. F. (1971). A note on the selection of data transformations, Biometrika, 58, 249-254. https://doi.org/10.1093/biomet/58.2.249
- Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, Journal of the Royal Statistical Society, B 26, 211-252.
- Carroll, R. J. (1980). A robust method for testing transformations to achieve approximate normality, Journal of the Royal Statistical Society, B 42, 71-78.
- Cook, R. A. and Wang, P. C. (1983). Transformations and influential cases in regression, Technometrics, 25, 337-345. https://doi.org/10.1080/00401706.1983.10487896
- Epps, T. W. and Pulley, L. B. (1983). A test for normality based on the empirical characteristic function, Biometrika, 70, 723-726. https://doi.org/10.1093/biomet/70.3.723
- Fan, Y. (1997). Goodness-of-fit tests for a multivariate distribution by the empirical characteristic function, Journal of Multivariate Analysis, 62, 36-63. https://doi.org/10.1006/jmva.1997.1672
- Hinkley, D. V. (1975). On power transformations to symmetry, Biometrika, 62, 101-111. https://doi.org/10.1093/biomet/62.1.101
- Hinkley, D. V. and Wang, S. (1988). More about transformations and influential cases in regression. Technometrics, 30, 435-440. https://doi.org/10.1080/00401706.1988.10488439
- Huber, P. J. (1964). Robust estimation of a location parameter, Annals of Statistics, 53, 73-101.
- Jimenez-Gamero, M. D., Alba-Fernandez, V., Munoz-Garcia, J. and Chalco-Cano, Y. (2009). Goodness-of-fit tests based on empirical characteristic functions, Computational Statistics and Data Analysis, 53, 3957-3971. https://doi.org/10.1016/j.csda.2009.06.001
- John, J. A. and Draper, N. R. (1980). An alternative family of transformations, Applied Statistics, 29, 190-197. https://doi.org/10.2307/2986305
- Kim, C., Storer, B. E. and Jeong, M. (1996). A note on Box-Cox transformation diagnostics, Technometrics, 38, 178-180.
- Klar, B. and Meintanis, S. G. (2005) Tests for normal mixtures based on the empirical characteristic function, Computational Statistics and Data Analysis, 49, 227-242. https://doi.org/10.1016/j.csda.2004.05.011
- Koutrouvelis, I. A. (1980). A goodness-of-fit test of simple hypothesis based on the empirical characteristic function, Biometrika, 67, 238-240. https://doi.org/10.1093/biomet/67.1.238
- Koutrouvelis, I. A. and Kellermeier, J. (1981). A goodness-of-fit based on the empirical characteristic function when parameters must be estimated, Journal of the Royal Statistical Society, B 43, 173-176.
- Lee, A. J. (1990). U-statistics: Theory and Practice, Marcel Dekker, New York.
- Rubin, H. (1956). Uniform convergence of random functions with applications to statistics. Annals of Mathematical Statistics, 27, 200-203. https://doi.org/10.1214/aoms/1177728359
- Szekely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances, Annals of Statistics, 35, 2769-2794. https://doi.org/10.1214/009053607000000505
- Taylor, J. M. G. (1985). Power Transformations to Symmetry, Biometrika, 72, 145-152. https://doi.org/10.1093/biomet/72.1.145
- Tsai, C. L. and Wu, X. (1990). Diagnostics in transformation and weighted regression, Technometrics, 32, 315-322. https://doi.org/10.1080/00401706.1990.10484684
- van Zwet, W. R. (1964). Convex transformations of random variables, Amsterdam: Mathematisch Centrum,
- Yeo, I. K. (2001). Selecting a transformation to reduce skewness, Journal of the Korean Statistical Society, 30, 563-571.
- Yeo, I. K. and Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry, Biometrika, 87, 954-959. https://doi.org/10.1093/biomet/87.4.954
- Yeo, I. K. and Johnson, R. A. (2001). A uniform strong law of large numbers for U-statistics with application to transforming to near symmetry, Statistics and Probability Letters, 51, 63-69. https://doi.org/10.1016/S0167-7152(00)00143-7