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Abstract
In this paper, we study the problem of transforming to normality. We propose to estimate the transfor-

mation parameter by minimizing a weighted squared distance between the empirical characteristic function of
transformed data and the characteristic function of the normal distribution. Our approach also allows for other
symmetric target characteristic functions. Asymptotics are established for a random sample selected from an
unknown distribution. The proofs show that the weight function t−2 needs to be modified to have thinner tails.
We also propose the method to compute the influence function for M-equation taking the form of U-statistics.
The influence function calculations and a small Monte Carlo simulation show that our estimates are less sensitive
to a few outliers than the maximum likelihood estimates.
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1. Introduction

Transformation of data is a useful tool that permits the use of an assumption such as normality, when
the observed data seriously violate this condition. It is well-known that, under the normality assump-
tion, the maximum likelihood estimator of the Box-Cox transformation parameter is very sensitive to
outliers, see Andrews (1971). There are two ways to circumvent this problem. The first approach is
to construct diagnostics which attempt to identify influential observations and then to remove these
observations before estimating the transformation parameter. Cook and Wang (1983), Hinkley and
Wang (1988), Tsai and Wu (1990) and Kim et al. (1996) studied case deletion diagnostics for the
Box-Cox transformation. However, for multiple outliers, these diagnostic procedures are quite com-
plicated and require an extensive computation. The second approach is to perform a robust estimation
procedure that is not strongly affected by outliers. Carroll (1980) proposed a robust method for se-
lecting a power transformation to achieve approximate normality in a linear model. Hinkley (1975)
and Taylor (1985) suggested methods to estimate the transformation parameter in the Box-Cox trans-
formation when the goal is to obtain approximate symmetry rather than normality. Yeo and Johnson
(2001) and Yeo (2001) introduced an M-estimator obtained by minimizing the integrated square of
the imaginary part of the empirical characteristic function of Yeo-Johnson transformed data.

In this paper, we propose a robust method to estimate a transformation parameter as well as the
mean and the variance of the target distribution. The estimators are obtained by minimizing a squared
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distance between the empirical characteristic function of the transformed data and the target charac-
teristic function which is often that of a normal distribution. Specifically, we minimize the integral
of the squared modulus of the difference of the two characteristic functions multiplied by a weight
function. It is assumed that, for some interval about zero, the weight function equals t−2 which is used
to compute the distance covariance by Szekely et al. (2007).

Many authors such as Koutrouvelis (1980), Koutrouvelis and Kellermeier (1981), Fan (1997), Klar
and Meintanis (2005), and Jimenez-Gamero et al. (2009) have proposed goodness-of-fit test statistics
based on measuring differences between the empirical characteristic function and the characteristic
function in the null hypothesis. Conversely, we employ this statistic as a measurement to estimate
the transformation parameter as well as the mean and the variance. Our estimation procedure can be
viewed as solving estimating equations based on a U-statistic, see Lee (1990). In order to calculate
the influence function, we take the approach of calculating this function in terms of the asymptoti-
cally equivalent statistic that is a sum of independent and identically distributed terms. The resulting
expressions show that our procedure is more robust than the maximum likelihood procedure.

2. Estimation

Let ψ(x, λ) be a family of transformations indexed by the transformation parameter λ, for instances,
Box and Cox (1964), John and Draper (1980), and Yeo and Johnson (2000). Generally, a main goal
of transforming data is to enhance the normality of data. According to the definition of the relative
skewness by van Zwet (1964), a convex transformation reduces left-skewness or vice versa. The
Box-Cox transformation and the Yeo-Johnson transformation are either convex or concave and can be
applied to skewed data to improve symmetry. By contrast, the modulus transformation by John and
Draper (1980) is convex-concave and can be applied to symmetric data to reduce kurtosis.

Let X1, . . . , Xn be independent and identically distributed random variables with distribution func-
tion F(·). It is assumed that there exists a transformation parameter λ for which ψ(X, λ) is normally
distributed with mean µ and variance σ2. This assumption can be extended to any symmetric distri-
bution with the location and the scale parameter, µ and σ.

Let ϕ(t) be the characteristic function of the standard normal distribution, that is ϕ(t) = e−t2/2,
and let ϕn(θ, t) be the empirical characteristic function of standardized transformed variables Z j(θ) =
{ψ(X j, λ) − µ}/σ, j = 1, . . . , n, where θ = (θ1, θ2, θ3)T = (λ, µ, σ2)T . Then,

ϕn(θ, t) = n−1
n∑

j=1

exp
(
itZ j(θ)

)
= ϕcn(θ, t) + iϕsn(θ, t),

where

ϕcn(θ, t) = n−1
n∑

j=1

cos
(
tZ j(θ)

)
and ϕsn(θ, t) = n−1

n∑
j=1

sin
(
tZ j(θ)

)
.

Here, the parameter space Θ is assumed to be a compact set of the form

Θ = {θ | ai ≤ θi ≤ bi, where 0 < a3, |ai|, |bi| < ∞, for i = 1, 2, 3} . (2.1)

The goodness-of-fit test statistics based on measuring differences between the empirical character-
istic function and the characteristic function in the null hypothesis have been extensively investigated
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in the literature. For example, Jimenez-Gamero et al. (2009) consider the statistic

Tn,G

(
θ̂
)
= n

∫ ∣∣∣∣ϕn(t) − ϕ
(
t; θ̂

)∣∣∣∣2 dG(t),

where ϕn(t) is the empirical characteristic function, ϕ(t; θ) is the characteristic function of target dis-
tribution, θ̂ is a consistent estimator and G is a distribution function. In this paper, we propose the
method to estimate θ by minimizing an integrated weighted version of the distance between the em-
pirical characteristic function of Z(θ) and e−t2/2,

φn(θ) = ∥ϕn(θ) − ϕ∥2w =
∫ {

ϕn(θ, t) − e−
t2
2

} {
ϕn(θ, t) − e−

t2
2

}
w(t)dt,

where the overline denotes the complex conjugate and w(t) is a non-negative real-valued weight func-
tion. Therefore,

φn(θ) ∝
∫

ϕn(θ, t)ϕn(θ, t)w(t) dt −
∫ {

ϕn(θ, t) + ϕn(θ, t)
}

e−
t2
2 w(t) dt.

Here ∫
ϕn(θ, t)ϕn(θ, t)w(t) dt =

1
n
+

2
n2

∑
j<k

∫
cos

(
t
{
Z j(θ) − Zk(θ)

})
w(t) dt,

∫ {
ϕn(θ, t) + ϕn(θ, t)

}
e−

t2
2 w(t) dt =

2
n

n∑
j=1

∫
cos

(
tZ j(θ)

)
e−

t2
2 w(t) dt.

Let ϕ(θ, t) = E[exp(itZ(θ))] denote the characteristic function of the standardized transformed variable
Z(θ) and

φ(θ) = ∥ϕ(θ) − ϕ∥2w =
∫ {

ϕ(θ, t) − e−
t2
2

} {
ϕ(θ, t) − e−

t2
2

}
w(t)dt.

The distribution of Z(θ) is equivalent to the standard normal distribution if and only if φ(θ) is zero.
Hence, a reasonable approach to estimation is to select the value θ̂ = (λ̂, µ̂, σ̂)T which minimizes
φn(θ).

In order to compute φn(θ), we have to specify the weight function. If the normal density with the
mean 0 and the variance δ2 is employed as the weight function, then

∫
cos(tz)w(t) dt is the characteris-

tic function of the normal distribution and so
∫

cos(tz)w(t) dt = exp{−δ2z2/2} and
∫

cos(tz)e−t2/2w(t) dt
= (1 + δ2)−1/2 exp{−δ2z2/(2(1 + δ2))}. Therefore, estimates are obtained by minimizing

φn(θ) ∝ 1
n

∑
j<k

exp
{
−δ

2

2

(
Z j(θ) − Zk(θ)

)2
}
− 1
√

1 + δ2

n∑
j=1

exp
{
−
δ2Z j(θ)2

2(1 + δ2)

}
.

Here, according to Epps and Pulley (1983), δ must be a small value . The behavior in neighborhood
of zero is important for characteristic functions. They mentioned that w(t) should assign high weight
in some interval around the origin.

As in Szekely et al. (2007), an alternative weight function is w(t) = t−2 on some interval containing
zero and we define integrals as the principle values. The integral on 0 to ∞ is the limit as ϵ → 0 of
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the integral over (ϵ, ϵ−1). However, when we later consider properties of estimators, including the
influence function, the upper and lower tails are too heavy and we find it necessary to impose a
moment condition on w(t). In this paper, we consider the truncated weight function such as w(t) = t−2

if t ∈ (−δ, δ) for a finite δ and 0 otherwise. The estimation procedure with this weight function
involves some difficult numerical integrations and the proof of the asymptotic results is somewhat
cumbersome; however, a simulation study shows that this weight function gives a better result. The
asymptotic results are derived with this weight function.

3. Asymptotic Theory

Before stating our results, we introduce some notations. For any function f (θ), for j, k = 1, 2, 3,

∇ f (θ∗) =
 ∂ f (θ)
∂θ j

∣∣∣∣∣∣
θθθ=θθθ∗

 and ∇2 f (θ∗) =
 ∂2 f (θ)
∂θ j∂θk

∣∣∣∣∣∣
θθθ=θθθ∗


are the gradient and the Hessian of f evaluated at θ∗, respectively, for j, k = 1, 2, 3. We also write

∇ j f (θ∗) =
∂ f (θ)
∂θ j

∣∣∣∣∣∣
θθθ=θθθ∗

and ∇2
jk f (θ∗) =

∂2 f (θ)
∂θ j∂θk

∣∣∣∣∣∣
θθθ=θθθ∗

,

and ψk(x, λ) = ∂kψ(x, λ)/∂λk where ψ0(x, λ) = ψ(x, λ).

Theorem 1. Let the parameter space Θ be given by (2.1) and let w(t) = t−2 if t ∈ (−δ, δ) and 0
otherwise. Assume that, for k = 0, 1, 2, ψk(x, λ) is continuous in (x, λ) and that there exists a function
hk(x) that satisfies |ψk(x, λ)| ≤ hk(x) and E[hk(X)2] < ∞ on Θ. Suppose φ(θ) has a unique global
minimum at θ0 = (λ0, µ0, σ0)T where θ0 is an interior point of Θ. Then,

(1) φn(θ)
a.s.−→ φ(θ) uniformly in θ ∈ Θ and φ(θ) is continuous in θ. That is,

lim
n→∞

{
sup
θθθ∈ΘΘΘ

φn(θ)
}
= sup

θθθ∈ΘΘΘ
φ(θ) with probability one.

(2) θ̂ is a strong consistent estimator of θ0

(3) n1/2∇φn(θ0) is asymptotically distributed with N(0,Σ(θ0)), where Σ(θ0) is specified in the proof

(4) n1/2(θ̂−θ0) is asymptotically distributed with N(0,V(θ0)Σ(θ0)V(θ0)T ), where V(θ0) = (∇2φ(θ0))−1.

Proof:

(1) Note that

φn(θ) =
∫ {(

ϕcn(θ, t) − e−
t2
2

)2
+ ϕsn(θ, t)2

}
w(t) dt.

To verify the finiteness of φn(θ), we first bound the integrand by adding and subtracting 1. Since
|(cos(tz) − 1)/t| ≤ |z| and | sin(tz)/t| ≤ |z|,

φn(θ) ≤
∫ {

2 (ϕcn(θ, t) − 1)2 + 2
(
1 − e−

t2
2

)2
+ ϕsn(θ, t)2

}
w(t)dt

≤ 6δ
n

n∑
j=1

Z j(θ)2 + c,
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where c = 2
∫

(1 − e−t2/2)2w(t)dt is a finite number. Thus it is clear that φn(θ) is finite.

Rather than work with the V-statistics in brackets, we will take a U-statistic approach. Let
C(t, z, θ) = cos(tz(θ)) − e−t2/2 and S (t, z, θ) = sin(tz(θ)). We define

η(z1, z2; θ) =
∫
{C(t, z1, θ)C(t, z2, θ) + S (t, z1, θ)S (t, z2, θ)} w(t) dt (3.1)

and then have

φn(θ) =
1
n2

n∑
j=1

n∑
k=1

η
(
Z j,Zk; θ

)
=

n − 1
n

Un(θ) +
1
n2

n∑
j=1

η
(
Z j,Z j; θ

)
, (3.2)

where

Un(θ) =
(
n
2

)−1 ∑
j<k

η
(
Z j,Zk; θ

)
.

Since η(z1, z2; θ) is bounded and continuous in (z1, z2; θ) ∈ ΩM = S M × S M × Θ where S M =

[−M,M], the uniform strong law of large numbers of U-statistics in Yeo and Johnson (2001)
ensures that

Un(θ)
a.s.−→ E

[∫
{C(t,Z1, θ)C(t,Z2, θ) + S (t,Z1, θ)S (t,Z2, θ)}w(t)dt

]
≡ η(θ)

uniformly in θ ∈ Θ and η(θ) is continuous in θ ∈ Θ. Note that Z1 and Z2 are independent and
identically distributed,

η(θ) =
∫ {

E [C(t,Z1, θ)]2 + E [S (t,Z1, θ)]2
}

w(t) dt = φ(θ). (3.3)

Furthermore, by the uniform strong law of large numbers in Rubin (1956),

1
n

n∑
j=1

η
(
Z j,Z j; θ

) a.s.−→ E
[
η
(
Z j,Z j; θ

)]
(3.4)

uniformly in θ ∈ Θ and this limit function in (3.4) is continuous in θ ∈ Θ and finally we conclude
that

φn(θ)
a.s.−→ φ(θ)

uniformly in θ ∈ Θ and the limit is continuous in θ ∈ Θ.

(2) Since φn(θ)
a.s.−→ φ(θ) uniformly in θ and φ(θ) is continuous in θ and, by assumption, θ0 is unique

minimizer of φ(θ), Lemma 2 in Yeo and Johnson (2001) allows us to conclude that θ̂
a.s.−→ θ0.

(3) Since |ψ(x, λ)| and |ψ1(x, λ)| are bounded by integrable functions and Θ is compact, each entry
of ∇z1(θ) is bounded and each entry is dominated by an integrable function. We verify that
∇η(z1, z2; θ) can be obtained by differentiating under the integral sign in (3.1). The result is

∇η(z1, z2; θ) =
∫
{T1(t, z1, z2, θ) + T2(t, z1, z2, θ)} t w(t) dt

+

∫
{T1(t, z2, z1, θ) + T2(t, z2, z1, θ)} t w(t) dt, (3.5)
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where

T1(t, z1, z2, θ) = sin(tz1(θ))
{
e−

t2
2 − cos(tz2(θ))

}
∇z1(θ),

T2(t, z1, z2, θ) = cos(tz1(θ)) sin(tz2(θ))∇z1(θ).

Using | sin(tz)/t| ≤ |z| again, it is easy to show that entries of ∇φn(θ) are finite. From (3.2), we see
that

∇φn(θ) =
n − 1

n
∇Un(θ) +

1
n2

n∑
j=1

∇η
(
Z j,Z j; θ

)
, (3.6)

where

∇Un(θ) =
(
n
2

)−1 ∑
j<k

∇η
(
Z j, Zk; θ

)
.

Again, by the uniform strong law of large numbers, the second term in (3.6) can be neglected.
Note that ∇η(z1, z2; θ) is a symmetric kernel and so ∇Un(θ) is also a U-statistics. Thus, the
multivariate central limit theorem for random samples and U-statistics ensure the asymptotic
normality of ∇φn(θ0) with the mean vector ∇φ(θ0) = 0 and the covariance matrix Wn(θ0), where
the ( j, k)-th element of Wn(θ0) is

W ( j,k)
n (θ0) =

(n − 1)2

n2

(
n
2

)−1 {
2(n − 2)E

[
∇ jη (Z1,Z2; θ0)∇kη (Z1,Z3; θ0)

]
+ E

[
∇ jη (Z1, Z2; θ0)∇kη (Z1,Z2; θ0)

]}
.

Therefore, n1/2∇φn(θ0) is asymptotically normally distributed as N(0,Σ(θ0)), where the ( j, k)-th
element of Σ(θ0) is

Σ( j,k)(θ0) = 4E
[
∇ jη(Z1,Z2; θ0)∇kη(Z1,Z3; θ0)

]
.

(4) Expanding n1/2∇φn(θ̂) about θ0, we obtain that

n
1
2∇φn

(
θ̂
)
= n

1
2∇φn (θ0) + ∇2φn

(
θ̃
)

n
1
2

(
θ̂ − θ0

)
,

where θ̃ = αnθ̂ + (1 − αn)θ0 for αn ∈ [0, 1]. Since n1/2∇φ(θ̂) = 0 at the minimum when θ̂ lies in
the interior of Θ, n1/2∇φn(θ0) − ∇2φn(θ̃)n1/2(θ̂ − θ0) converges in probability to 0.

From (3.5) and (3.6), we have

∇2η(z1, z2; θ) =
∫
{S 1(t, z1, z2, θ) + tC1(t, z1, z2, θ)} e−

t2
2 t w(t) dt

+

∫
{S 2(t, z1, z2, θ) − tC2(t, z1, z2, θ)} t w(t) dt, (3.7)
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where

S 1(t, z1, z2, θ) = sin (tz1(θ))∇2z1(θ) + sin (tz2(θ))∇2z2(θ),

C1(t, z1, z2, θ) = cos (tz1(θ))∇z1(θ)∇z1(θ)T + cos(tz2(θ))∇z2(θ)∇z2(θ)T ,

S 2(t, z1, z2, θ) = sin (t(z1(θ) − z2(θ)))∇2(z2(θ) − z1(θ)),

C2(t, z1, z2, θ) = cos (t(z1(θ) − z2(θ)))∇(z2(θ) − z1(θ))∇ (z2(θ) − z1(θ))T

and ∇2φn can be written as

∇2φn(θ) =
n − 1

n
∇2Un(θ) +

1
n2

n∑
j=1

∇2η
(
Z j,Z j; θ

)
, (3.8)

where

∇2Un(θ) =
(
n
2

)−1 ∑
j<k

∇2η
(
Z j,Zk; θ

)
.

Note that, since |ψ(x, λ)|, |ψ1(x, λ)|, and |ψ2(x, λ)| are bounded by integrable functions and Θ is
compact, each entry of ∇2z1(θ) and ∇z1(θ)(∇z2(θ))T is bounded. Hence, by the uniform strong
law of large numbers, the second term in (3.8) can be neglected. Applying the uniform strong law
of large numbers for U-statistic to ∇2Un(θ) we conclude that ∇2φn(θ) converges almost surely to
∇2φ(θ) uniformly in θ ∈ Θ where ∇2φ(θ) is continuous in θ. Hence, using the uniform conver-
gence of ∇2φn and the continuity of ∇2φ with almost sure convergence of θ̂ to θ0; therefore, it is
easy to show that

∇2φn

(
θ̃
)

converges almost surely to ∇2φ (θ0) .

Slutsky’s theorem along with asymptotic normality of n1/2φn(θ0) and (3.9) ensure n1/2(θ̂ − θ0) is
asymptotically distributed with N(0,V(θ0)Σ(θ0)V(θ0)T ), where V(θ0) = (∇2φ(θ0))−1. �

Remark 1. Note that, for a1 ≤ λ ≤ b1, the Box-Cox transformation, the Yeo-Johnson transforma-
tion, and the modulus transformation satisfy the following inequalities:

|ψ(x, λ)| ≤ |ψ(x, a1)| + |ψ(x, b1)| = h(x),
|ψ1(x, λ)| ≤ |ψ1(x, a1)| + |ψ1(x, b1)| = h1(x),
|ψ2(x, λ)| ≤ |ψ2(x, a1)| + |ψ2(x, b1)| = h2(x).

It is also shown that ψ(x, λ), ψ1(x, λ), and ψ2(x, λ) are continuous in (x, λ).

4. Influence Function

The influence function is a basic tool to measure the robustness of estimators. Whereas the influence
function of M-estimators with independent random variables has been extensively studied in litera-
ture, there is no literature that addresses the influence function for U-statistics. Hence we adopt the
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following approach. Instead of working with the statistic Un(θ0) in (3.2), we use the asymptotically
equivalent statistic n−1 ∑n

j=1 η(Z j; θ0), where

η(z1; θ0) = E[η(z1, Z2; θ0)]

=

∫
C(t, z1, θ0)E [C(t,Z2, θ0)] w(t) dt +

∫
S (t, z1, θ0)E [S (t,Z2, θ0)] w(t) dt. (4.1)

Since η(Z j; θ0)’s are independent and identically distributed, we can use the usual M-equation theory
of robustness based on estimating equations 0 = n−1 ∑n

j=1 ∇η(Z j; θ0), where the derivative becomes

∇η(z1; θ0) = E
[∇η(z1,Z2; θ0)

]
=

∫
{E [T1(z1,Z2, t, θ0)] + E [T2(z1,Z2, t, θ0)]} t w(t) dt

+

∫
{E [T1(Z2, z1, t, θ0)] + E [T2(Z2, z1, t, θ0)]} t w(t) dt. (4.2)

Assume that the conditions of Theorem 1 hold. Then, the influence function is given by

IF(x0, F) =M−1 ∇η(z; θ0), (4.3)

where

M = −E
[
∇2η(Z1; θ0)

]
= 2

∫
E [cos(tZ1(θ))] E

[
cos(tZ1(θ))∇Z1(θ0)∇Z1(θ0)T

]
t2w(t) dt

2
∫

E [sin(tZ1(θ))] E
[
sin(tZ1(θ))∇Z1(θ0)∇Z1(θ0)T

]
t2w(t) dt

− 2
∫

E [cos(tZ1(θ))∇Z1(θ0)] E
[
cos(tZ1(θ))∇Z1(θ0)T

]
t2w(t) dt

− 2
∫

E [sin(tZ1(θ))∇Z1(θ0)] E
[
sin(tZ1(θ))∇Z1(θ0)T

]
t2w(t) dt

+ 2
∫

E [cos(tZ1(θ))] E
[
sin(tZ1(θ))∇2Z1(θ0)

]
tw(t) dt

−
∫
{E [S 1(t,Z1,Z1, θ0)] + tE [C1(t,Z1,Z1, θ0)]} e− t2

2 t w(t) dt,

because Z1 and Z2 are independent and identically distributed. The influence function (4.3) is the
standard result for M-estimator in an independent and identically distributed setting. Under our as-
sumptions, all integrals and expectations in (4.1), (4.2), and (4.3) are finite.

For the Box-Cox transformation, the Yeo-Johnson transformation and the modulus transforma-
tion, λ0 = 1 implies that the transformation is not necessary to improve normality. For λ0 = 1, the
influence function of maximum likelihood estimator under normality is proportional to x2 log(x), for
x > 0, when the Box-Cox transformation is applied. Under our characteristic function approach, the
influence function of the proposed estimator is proportional to x log(x). This calculation shows that
the proposed estimator of λ is still sensitive, but less sensitive than the normal maximum likelihood
estimate to an outlier. It can also be easily shown that the influence of an outlier to estimate µ is
bounded. In the case where µ = 0 and σ2 = 1, Carroll (1980) proposed an estimator based on robust-
ness arguments that also has influence function proportional to x log(x) when a just estimation of λ is
considered.
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5. Comparison with MLE

In this section, we present a small simulation that supports the influence function calculation by show-
ing that our empirical characteristic function approach provides an estimator of λ that is more robust
than the maximum likelihood estimator. Moreover, our proposed estimator appears to be slightly
better than Carroll’s robust estimator under the mixed alternatives considered below.

Our proposed method to estimate λ is compared with the maximum likelihood method and Car-
roll’s method. When the Box-Cox transformation is employed, the maximum likelihood method
estimates λ by maximizing the profile log-likelihood function

l(λ; x) = −n
2

log
(
σ̂(λ)2

)
+ (λ − 1)

n∑
i=1

log(xi),

where σ̂(λ)2 = n−1 ∑n
j=1(ψ(x j, λ) − µ̂(λ))2 and µ̂(λ) = n−1 ∑n

j=1 ψ(x j, λ). Carroll follows Huber (1964)
with the choice of loss function

ρ(x) =


x2

2
, |x| ≤ k,

k
(
|x| − k

2

)
, |x| > k.

He expresses the likelihood in terms of the density with ‘normal center-exponential tails’ as follows;

L(θ; x) = σ−n
n∏

i=1

exp
{
−ρ

(
ψ(xi, λ) − µ

σ

)
+ (λ − 1) log(xi)

}
.

Thus the log-likelihood is

l(θ; x) = −n log(σ) +
n∑

i=1

{
−ρ

(
ψ(xi, λ) − µ

σ

)
+ (λ − 1) log(xi)

}
.

The estimation of λ consists of the following steps: For a fixed λ, take a starting value of σ and then
estimate µ by solving

n∑
i=1

τ

(
ψ(xi, λ) − µ

σ

)
= 0,

where τ is the derivative of ρ. The iterative procedure estimates σ by solving

1
n − 1

n∑
i=1

τ2
(
ψ(xi, λ) − µ

σ

)
= EΦ

[
τ2(Z)

]
,

where the last expectation is taken with respect to a standard normal variable Z. To find the value of
λ, maximize the likelihood function in

λ̂ = arg max
λ

L(µ(λ), σ(λ), λ).

As in Carroll (1980), we take k = 2 in the definition of ρ(x).
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Table 1: Simulation results for the estimation of λ with sample size n = 100. The weight function for our
method is a truncated version of 1/t2. The mean, MSE and MAE are calculated from 1000 runs.

Distribution Summary Estimation Method
λ∗Proposed MLE Carroll

Bias 0.0017 0.0009 0.0017 0

(1) SD 0.0014 0.0012 0.0012
MSE 0.0018 0.0015 0.0016
MAE 0.0343 0.0303 0.0305
Bias 0.0006 0.0005 0.0007 0

(2) SD 0.0015 0.0016 0.0016
MSE 0.0021 0.0026 0.0026
MAE 0.0366 0.0402 0.0401
Bias 0.0173 −0.0098 −0.0459 0.5

(3) SD 0.0079 0.0062 0.0064
MSE 0.0620 0.0385 0.0427
MAE 0.1982 0.1558 0.1612
Bias −0.1265 −0.2159 −0.2391 0.5

(4) SD 0.0082 0.0074 0.0074
MSE 0.0838 0.1008 0.1122
MAE 0.2301 0.2579 0.2753
Bias −0.0398 −0.0578 −0.1164 1

(5) SD 0.0131 0.0115 0.0052
MSE 0.1721 0.1348 0.1655
MAE 0.3444 0.2961 0.3231
Bias −0.2649 −0.4374 −0.4838 1

(6) SD 0.0152 0.0144 0.0147
MSE 0.3001 0.3999 0.4495
MAE 0.4410 0.5107 0.5468

To evaluate the performance of the three methods of estimating λ, we generate pseudo random
numbers from six different distributions. We write N(µ, 1) for a normal random variable having mean
µ and variance 1. Also, for instance, the log-normal random variable whose logarithm is normal and
has mean 2 and variance 22 is written as exp(2N(0, 1)).

(1) log-normal distribution: exp(2N(0, 1)).

(2) mixture of log-normal distributions: 0.98 exp(2N(0, 1)) + 0.02 exp(5N(0, 1)).

(3) normal squared distribution: N(5, 1)2.

(4) mixture of normal squared distributions: 0.98N(5, 1)2 + 0.02N(8, 1)2.

(5) normal distribution: N(5, 1).

(6) mixture of normal distributions: 0.98N(5, 1) + 0.02N(8, 1).

Note that for situations (2), (4) and (6), the generated data will contain about 2% outliers. For practical
purposes, we truncated w(t) = t−2 at |t| ≤ 50. Initially, we also tried some weight functions that place
less mass near 0.

For each situation, we generate samples of size n = 100 and obtain the estimate λ̂ from each
estimation method. This procedure is repeated N = 1000 times. For each estimation method, we
summarize performance by calculating the mean and the standard deviation of λ̂, the mean squared
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error(MSE) of λ̂, and the mean absolute error (MAE) of λ̂. Specifically, we calculate

MSE =
1
N

N∑
i=1

(
λ̂i − λ∗

)2
, MAE =

1
N

N∑
i=1

∣∣∣λ̂i − λ∗
∣∣∣ .

where λ̂i is the estimate of λ from the ith replication and λ∗ denotes the value of true λ.
Table 1 reports the bias and the standard error of λ̂, the MSE, and the MAE for the three meth-

ods. Carroll (1980) also gives a simulation where his and the Box-cox estimator have nearly the same
behavior under a log-normal distribution. Based on these summary statistics, the proposed method
shows worse performance when underlying distribution is not a mixture. However, in all three cases
where the underlying distribution is a mixture, our proposed method based on the empirical character-
istic function has a smaller bias, MSE and MAE than the Box-Cox estimation and Carroll’s estimation.
This implies that the proposed method is less sensitive to outliers.
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