References
- L. V. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975-978. https://doi.org/10.1090/S0002-9939-1962-0148896-1
- A. Alesina and M. Galuzzi, Vincent's theorem from a modern point of view, In R. Betti and W. F. Lawvere (Eds.), Categorical Studies in Italy 2000, Rend. Circ. Mat. Palermo, Serie II 64 (2000), 179-191.
- A. G. Akritas, A. W. Strzebonski, and P. S. Vigklas, Improving the performance of the continued fractions method using new bounds of positive roots, Nonlinear Anal. Model. Control 13 (2008), no. 3, 265-279.
- F. G. Avkhadiev and K. J. Wirths, Schwarz-Pick Type Inequalities, Birkhauser Verlag AG, Basel-Boston-Berlin, 2009.
- M. Chuaqui, P. Duren, and B. Osgood, The Schwarzian derivative for harmonic mappings, J. Anal. Math. 91 (2003), 329-351. https://doi.org/10.1007/BF02788793
- J. G. Clunie and T. Sheil-Small, Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
- F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J. 38 (1989), no. 4, 829-840. https://doi.org/10.1512/iumj.1989.38.38039
- P. L. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics 156, Cambridge Univ. Press, Cambridge, 2004.
- P. L. Duren and O. Lehto, Schwarzian derivatives and homeomorphic extensions, Ann. Acad. Sci. Fenn. Ser. 477 (1970), 11 pp.
- J. Fourier, Analyse des equations determinees, F. Didot, Paris, 1831.
- A. W. Goodman, Univalent Functions, Mariner Publishing, Tampa, 1983.
- D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity of harmonic functions, Complex Var. Elliptic Equ. (2013), to appear.(arXiv:1107.0610)
- S. Kanas and D. Klimek, Coefficient estimates and Bloch's constant in some class of harmonic mappings, to appear.
- D. Klimek and A. Michalski, Univalent anti-analytic perturbations of the identity in the unit disc, Sci. Bull. Che lm 1 (2006), 67-76.
- D. Klimek and A. Michalski, Univalent anti-analytic perturbations of convex analytic mappings in the unit disc, Ann. Univ. Mariae Curie-Sk lodowska Sect. A Vol. LXI (2007), Sectio A, 39-49.
- W. Krauss, Uber den Zusammenhang einiger Clarakteristiken eines einfach zusammenh angenden Bereiches mit der Kreisabbildung, Mitt. Math. Sem. Giessen 21 (1932), 1-28.
- O. Lehto, On the distortion of conformal mappings with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. Math. 124 (1952), no. 124, 14pp.
- H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689-692. https://doi.org/10.1090/S0002-9904-1936-06397-4
- Z. Nehari, The Schwarzian derivatives and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. https://doi.org/10.1090/S0002-9904-1949-09241-8
- A. J. H. Vincent, Sur la resolution des equations numeriques, J. Math. Pures Appl. 1 (1836), 341-372.