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HARMONIC MAPPINGS RELATED TO FUNCTIONS WITH
BOUNDED BOUNDARY ROTATION AND NORM OF THE
PRE-SCHWARZIAN DERIVATIVE

STANISLAWA KANAS AND DOMINIKA KLIMEK-SMET

ABSTRACT. Let S% be the class of normalized univalent harmonic map-
pings in the unit disk. A subclass VH(k) of S%, whose analytic part is
function with bounded boundary rotation, is introduced. Some bounds
for functionals, specially harmonic pre-Schwarzian derivative, described
in V* (k) are given.

1. Introduction

A harmonic mapping f of the simply connected region €2 is a complex-valued
function of the form

(1.1) f=h+7,

where h and ¢ are analytic in Q, with g(z9) = 0 for some prescribed point
zp € ). We call h and g analytic and co-analytic parts of f, respectively. If f is
(locally) injective, then f is called (locally) univalent. The Jacobian and second
complex dilatation of f are given by J¢(2) = |f.|*—|f:|*> = |W'(2)|*—|¢'(2)|* and
w(z) =¢'(2)/W(z) (= € Q), respectively. A result of Lewy [18] states that f is
locally univalent if and only if its Jacobian is never zero, and is sense-preserving
if the Jacobian is positive. The sense-preserving case implies |w(2)| < 1 in D.
Throughout this paper we will assume that f is locally univalent, sense-
preserving, and 2 = D C C, with zp = 0, where D is the open unit disk on
the complex plane. Following Clunie and Sheil-Small notation [6], the class
of all sense-preserving univalent harmonic mappings of D with h(0) = ¢(0) =
h'(0) —1 = 0 we denote Sy, and its subclass for which ¢'(0) = 0 by SY,. Several
fundamental information about harmonic mappings in the plane can be found
in e.g. [8]. We note that each f satisfying (1.1) in D is uniquely determined by
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coefficients of the following power series expansions

(1.2) h(z) = Z anz", g(z) = Z bpz" (2 €D),

where a, € C, n =0,1,2,...and b, € C, n = 1,2,3,.... Moreover, when
f € Sy we have ag = 0,a; = 1. In the sequel, we assume also ¢’(0) = by with
|b1| = a. Taking into account the condition |w(z)| < 1, immediately obtains
0<a<l1. Let

(1.3) wiz)=co+ciz+cz? +--- (z€D).

According to the relation w = ¢’/h’ we have ¢g = by with |b1| = a. Therefore,
we have

|r — «f T+«
1.4 < <
(1.4 P < 2
and
1— |w(z)|?
(1.5) len] <1 —eo?,  |'(2)] < S (z e D).

see e.g. [4, p. 30, 53].
Let V(k) denote the class of bounded boundary rotation, i.e., a class of
normalized functions f such that
Tewfu(rew

(16) Kﬂ Fi(rei?

see [17]. We note that V(k1) C V(kz2) for k1 < ko. We assume k > 2 and if
k <4, then f is close-to-convex (the converse is not true). Let

Re<1+ >}d9§k7r,

k/2 o

1 142 "

ﬂ@z<p9 42&“”
(1.7) n=l
=z 22 5 z ,

z € . Then the following estimates holds.
Theorem 1.1 ([11], t.IT, pp. 16-25). If f € V(k), then

(1.8) [f(2)| < Fi(r),  Fp(=r) <|f'(2)| < F(r),
and
(1.9) |an] < By (k).

In the present paper we introduce the concept of planar harmonic mappings
with the analytic part being a function with bounded boundary rotation.

Definition 1.2. By V*(k) we denote the subclass of Sy consisting of all har-
monic mappings of the form f = h+ g for which h € V(k), with normalization
h(0) = g(0) = R'(0) =1 =0 and ¢'(0) = by, |b1] = a
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The classes of functions f = h 4+ g with fixed analytic part were studied
previously in the literature. We remain, for example, papers [13], [14], [15]; in
[14] authors studied properties of a subset 3% of Sy consisting of all univalent
anti-analytic perturbations of the identity whereas in [15] the class S of all
f € Sy, such that h is convex, normalized univalent functions.

2. Coefficient and distortion results

Theorem 2.1. Let f be of the form (1.1) with the Taylor expansions (1.2) and
f € VH™(k). Then

1 O[Q n—1
(2.1) [bal < aBn(k) + — > pBy(k),
p=1
where By (k) are given by (1.7). Specially, we have
1—a?+ak 1—-a?)(1+k alk?+2
(22) [ < TEOEOR U NUER a2

The result is sharp only for the case n = 2.

Proof. By the relation ¢’ = wh’ we have

n—1 n—1

(2.3) nb,, = Z(p + 1)ap+1Cn—p—1 = anco + Zpapcn_p.

p=0 p=1

Observing that ¢g = by so that |¢o| = |b1] = «, and making use of (1.5), and
lan| < By (k) the assertion immediately follows. We note, that the bounds in
(2.1) is sharp only for the case n = 2. Indeed, defining w(z) = a + (1 — a)z,
h(z) = Fy(z), and applying the relation ¢’ = wh’ with ¢(0) = 0 by integration
we have

9(z) = aFi(z) + (1 — a)zFi(2) — (1 — @) /OZ Fy(w)dw.

In a such case by = ¢g”(0)/2 = (1 — a? + ak)/2, that realizes equality for by in
(2.2). O

Remark 2.1. The reasoning used in a proof of Theorem 2.1 may be applied
to the bounds of coefficients of any harmonic functions f = h + g, with an
assumption |¢’(0)] = « and such that the coefficients of the analytic part h
satisfy |a,| < B, for n > 1 (here h(z) = 2+ a22® + - -+ ). Such approach is also
presented in [12].

Theorem 2.2. Let f € V*(k). Then
(2.4)

et ()< s i (129)
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1 \F2  1_ 42 A 1 k/2
29 bel< e () - J(05) o
B +ar) \T+r k 1-t) (1-at)?
0
k/2 2 k/2
a—r 1—7r 1-—«a 1—t dt
2. >
26) 9l 2 17— <1+r> % /<1+t> (1—at)?|’
0

a+r 1—r k/2 a2 1+t k/2 dr
< F .
F)l < k(r)Jrk(l—i—ar) (1+T) /(1—15) (1—at)?
0

Proof. By the relation ¢’ = wh' we have |¢'(z)| = |w(z)||h/(2)|. The assertion
(2.4) now follows by (1.4) and (1.8).

We notethat if  is univalent, and m/(r) < |¢/(2)| < M'(r) (0 < |z| =7 < 1)
then [ m/(r)dr < |p(2)] < [y M’ )dr. Applying this together with (2.4) we
obtain (2. 5) and (2.6). O

Remark 2.2. The bounds in (2.5), (2.6) and (2.7) may be represented by the
Appell hypergeometric function Fi (a; by, be; ¢; 2, y), of two real variables 2 and
y, when we apply the following

/’“ 1+e\*?*  at
o \1—t (1 —at)?

-1 k/2 _ _ -
_ ( ) 1 F1 17§7_]€’271—06’H—(1 _F1 1;E7—k,2;1—a,1+a .
« 1—ar 27 2 l—ar’1—ar 272

Remark 2.3. For the special case k& = 1 we recover from Theorem 2.2 the
distortion theorem for the harmonic mappings with analytic part being convex
and univalent function (compare [15]).

3. Pre-Schwarzian derivative

The Schwarzian Sy and pre-Schwarzian T’ derivatives of a holomorphic and
locally univalent function f is defined by

f// 4 f// , 5
(3.1 so=(5) -2 (B) =y -
The Schwarzian derivative is a basic tool in complex analysis; it measures the

deviation of f from a Mé&bius transformation. The hyperbolic sup-norm of S¢
(T, respectively) is introduced as follows

15411 = sup(L — |2*)*[S¢(2)], (| T7]| = sup(1 — [2[*)| T (2)]-
zeD z€D

Both, the Schwarzian and pre-Schwarzian play a central role in the theory of
Teichmiiller spaces, inner radius of univalence, quasiconformal extension, etc.
We quote here one of the most important results.



HARMONIC MAPPINGS 807

Theorem 3.1 (Ahlfors-Weill [1], see also Krauss [16], Nehari [19], Duren and
Lehto [9]). Let f be the function normalized and analytic in the unit disk. If
f is univalent, then ||Sy|| < 6. Conversely, if ||Sf|| < 2, then f is univalent.
Moreover, let 0 < k < 1. If [ extends to a k-quasiconformal mapping of the
Riemann sphere C then ||Sy|| < 6k. Conversely, if ||S¢|| < 2k, then f extends
to a k-quasiconformal mapping of C.

The first problem in the theory of locally univalent harmonic mappings, is
to find a suitable definition of the Schwarzian derivative (the pre-Schwarzian
derivative, respectively). A natural definition, using the differential geometry of
associated minimal surface, has been proposed by Chuaqui, Duren and Osgood
[5], and described by the formula

9?(log \) d(log A\
3.2 Sp=2 -2
(32) ! 022 0z ’
where A = |h'| + [¢’|. In the case, when f is analytic, A\ = |f’|, so that
logA = log f'/2 + log f’/2, therefore (3.2) agrees with the classical formula
(3.1). In connection with harmonic Schwarzian derivative we define harmonic
pre-Schwarzian as

_ 20(log \)
(3.3) Ty = =2~

which, in the analytic case becomes f”/f’, as in (3.1).
We observe that, if ¢' = wh/, then [8, p. 191]

2w w'h” o \?
3.4 [P G DR N G
4 = e (-5 ) -4 ()
and
20(log\) K" 2w'w 2w'w
(8:5) =T, TR e

Also, note that

Stop = (S§op) o+ Sp, Trop =Trop+T,.
The above formulas are generalization of the classical transformation formula
for Schwarzian and pre-Schwarzian under composition.

In this section we find bounds of the norm of pre-Schwarzian derivative for
co-analytic part of harmonic mapping from &3, and V7 (k).

Before we prove the next theorems we remain some fact about the cardinals
of polynomials roots. The best known is the classical rule of Descartes-Harriot,
but it is not sufficient for computing the number of roots over a given interval.
This problem was solved by Sturm, however less known but efficient method
was presented by Vincent [20], using continued fractions. The modified Vin-
cent’s theorem e.g. its bisection version due to Alesina and Galuzzi [2] was
presented after almost 200 years, in 2000. This method was next implemented
by Vincent-Akritas-Strzebonski [3] and the continued fractions method for the



808 S. KANAS AND D. KLIMEK-SMET
determining the real zeros turns out to be the fastest method derived from
Vincent’s theorem.

Theorem 3.2 (Vincent, [20], bisection version (2000), [2], [3])). Let p(z) be a
polynomial of degree n. There exists a positive quantity § so that for every pair
of positive rational numbers a,b with |b — a| < & every transformed polynomial

of the form
Vi) = (T

14+
has exactly 0 or 1 wvariations in the sequence of its coefficients. The second

case is possible if and only if p(x) has a simple root within (a,b). Moreover,
the number of the sign variation is the mazimal number of roots in (a,b).

Theorem 3.3. The norm of the harmonic pre-Schwarzian derivative in the
class 83 is bounded by

(1 —r§)(a+70)
(1+arg)[(1 4+ a?)(1 +rd) — darg]’
where ro is the only root from the interval (0,1) of the equation

(3.7)
ro(at +4a® —1) +4ard(1—a?) —4r2(a* + 1) +4rpa(a® = 1) +1+4a® —a* = 0.

(3.6) I1Ty|] < 2(1—a?)

Proof. Since h(z) = z then T}, = 0 so that
2wW'@
T = —.
P TP
Making use estimates (1.4), (1.5), we obtain for |z| =7 < 1

2(1 —a®)(a+r)

(3.8) |Tf| < (1 T ar)[(l + 042)(1 ¥ TQ) — 4047"]’
so that
(39) ||Tf|| < 2(1 _ a?) sup (1 — 7’2)(a + T)

o<r<1 (1 4+ ar)[(1 + a2)(1 +r2) —dar]’
The derivative of the function
(1= ) +7)
(I4+ar)[(14+a?)(1+1r2) — dar]
is zero, if the function H, given by
H(r) :=r*(a* +40® —1)+4ar®(1—a?)—4r?(a* + 1) +4ra(a® 1)+ 1+ 4a* —a*

takes its zero for 0 < r < 1. Note, that H(0) = 1+ 4a® — a* > 0 and
H(17) = —4(a® — 1)2 < 0 then there exists ro € (0,1) such, that H(rg) = 0.
We prove the such root of H is unique on (0,1). It is enough to prove that the
derivative

H'(r) = 4r3(a* + 40 — 1) + 12ar%*(1 — a®) — 8r(a® + 1) + da(a® — 1)

G(r) :=
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is negative for 0 < r < 1 and 0 < o < 1. Fix now r, and let L(«) = H'(r) for
0<a<landO<r<1,sothat

L(a) = (=8r +4r¥)a* + (4 — 12r?)a® 4+ 16r3a? 4+ (—4 + 12rH)a + (—8r — 473).
We note that L(0) = —8r — 4r® and L(1) = 167(r? — 1) < 0. Next, define

V(x):(1+x)4L( z )

1+
Then, we have
Viz) = —4r(2+7%) —4(1 + 8r — 3r + 4r°)z

—4(1 4 8r — 3r% + 4r3)2?

—8(1—r)(1+5r 4+ 2r*)2® — 16r(1 — r?)z"
It is easy to check that the sign of the sequence of coefficient of V' (z) has the
form (—,—,—,—,—). Therefore there is no sign variation on (0,1) for every
r € (0,1). By the Vincent theorem we then conclude that there is no zeros
of polynomial L(«) in the interval (0,1). Since the function L start from the
negative value L(0), therefore it must be negative in the entire interval, that
implies the negativity of H'.

Hence, H is decreasing for 0 < r < 1 and 0 < a < 1, and the equation (3.7)

has the only root on the interval (0,1), which is the only maximum of G on
(0,1). O
Theorem 3.4. The norm of pre-Schwarzian derivative in the class V¥ (k) is
bounded by
2(1 — a?)(a +1p)

(1+ arg)[(1+ a?)(1 +r2) — darg]’
where ro is the only root of the equation
(3.11) 2+ 5a% —4a* +a® — 2ra(5 — 2% + a*) +r?(=2 + 9a? — 16a* + 5a5)

+16r30® + r*a? (=7 + 202 + a*) +r°(2a — 40® — 60°) + r°(a + o?)?
on the interval (0,1).
Proof. Since h € V(k) then |Ty| < (k +2r)/(1 —72),|2| =7 < 1, and

(3.10) [|Tr]| < k+2r9+

2w 2w
Tl = |Th + —| < |Tp| + |[—].
sl =T+ T | < T | Tap
Therefore
k+2r 2(1 —a®)(a+r)
Ty|| < 1—7?
17 < o 0 [F555 + fra seoir

The derivative of the right hand function is equal to zero, if
2+ 502 — 4o +a® — 2ra(5 — 2a% + ) + 73(=2 + 9a% — 160 + 5a9)
+16r3a% + rta? (=74 2% + o) +r°(2a — 40® — 60°) +r%(a +®)? =0
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for r € (0,1). Denote the last polynomial by P(r). Then
P(0)=2+50% —4a* +a® =2+ 4a%(1 —a?) +a® +af >0,
and
P(1) = —8a + 8a% + 160° — 160" — 8a° + 8a5 = —8a(1 — a)(1 — o?)? < 0,

so that there exists 9 € (0,1), such that P(rg) = 0. It suffices to prove that
o is unique. To claim this we prove that P’ < 0 for r € (0,1). Let r € (0,1)
be now fixed, and denote by Q(«) the derivative P’(r), that is

Qo) = —4r —10(1 — ")+ 2r(9 — 142 + 3r*)a?
+ (4 + 4877 — 20r*)a® + (=327 + 87 + 12r°)a?
+ (=2 = 30r*)a® + (10r + 4% 4 61°)a’.
We have Q(0) = —4r < 0 and Q(1) = 8(r — 1)3(1 + 4r + 3r%) < 0.

Let Sy be the number of sign variation in the sequence of coefficients of the
polynomial @Q(«). Denoting the coefficients of Q(«) by ay, ..., as we have

ag = —4r <0,

a; = —10+10r* < 0,

as = 2r(9 — 147% + 3r*) < 0, or > 0,
as =4+ 48r% — 20r* > 0,

ay = 4r(—8 4 2r% 4+ 3r1) <0,

as = —2(1+ 157%) < 0,

ag = 107 + 472 + 61° > 0.

Hence the sequence of the sign of the coefficients a;(: = 0, ...,6) is (—, —, &, +,
—,—,+), so that the number of sign changes is Sy = 3 for any r € (0,1). It
means, by the classical rule of Descartes-Harriot, that there are 3 or 1 positive
roots of Q(a). In order to show that there is no zero in (0, 1) we use the Vincent
Theorem. The function

Vi) = (+are (1)

1+«
has the following coefficients
bo = —4r <0,
by = —10(1 —r*) — 24r < 0,

by = —2[(1 — r*)(25 4 37) + 18r + 147%] < 0,
by = —8[3(1 —r*)(2+ %) +10r3(1 —r1) + 6 +r +7°] <0,
by =8(r —1)(2+9r+9(1 —r?) + 117° + 6r*) <0,

bs = —8(1 —r)[1 +4(1 —r*) +7r(1 —r) + 3 + 6r'] <0,
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be = 8(r — 1)*(1 +7)(1 +3r) <0,

that form the following sequence of sign (—, —, —, —, —, —) with no sign vari-
ations. Thus, by the Vincent Theorem, there are no zeros at (0,1) for any
r € (0,1). It means that Q(«) < 0 for every o € (0,1) and r € (0,1), equiva-
lently P’(r) < 01in (0, 1) that ends the proof. O
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