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HARMONIC MAPPINGS RELATED TO FUNCTIONS WITH

BOUNDED BOUNDARY ROTATION AND NORM OF THE

PRE-SCHWARZIAN DERIVATIVE

Stanis lawa Kanas and Dominika Klimek-Smȩt

Abstract. Let S0
H be the class of normalized univalent harmonic map-

pings in the unit disk. A subclass VH(k) of S0
H, whose analytic part is

function with bounded boundary rotation, is introduced. Some bounds
for functionals, specially harmonic pre-Schwarzian derivative, described
in VH(k) are given.

1. Introduction

A harmonic mapping f of the simply connected region Ω is a complex-valued
function of the form

(1.1) f = h+ g,

where h and g are analytic in Ω, with g(z0) = 0 for some prescribed point
z0 ∈ Ω. We call h and g analytic and co-analytic parts of f , respectively. If f is
(locally) injective, then f is called (locally) univalent. The Jacobian and second
complex dilatation of f are given by Jf (z) = |fz|

2−|fz̄|
2 = |h′(z)|2−|g′(z)|2 and

ω(z) = g′(z)/h′(z) (z ∈ Ω), respectively. A result of Lewy [18] states that f is
locally univalent if and only if its Jacobian is never zero, and is sense-preserving
if the Jacobian is positive. The sense-preserving case implies |ω(z)| < 1 in D.

Throughout this paper we will assume that f is locally univalent, sense-
preserving, and Ω = D ⊂ C, with z0 = 0, where D is the open unit disk on
the complex plane. Following Clunie and Sheil-Small notation [6], the class
of all sense-preserving univalent harmonic mappings of D with h(0) = g(0) =
h′(0)−1 = 0 we denote SH, and its subclass for which g′(0) = 0 by S0

H
. Several

fundamental information about harmonic mappings in the plane can be found
in e.g. [8]. We note that each f satisfying (1.1) in D is uniquely determined by
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coefficients of the following power series expansions

(1.2) h(z) =
∞∑

n=0

anz
n, g(z) =

∞∑

n=1

bnz
n (z ∈ D),

where an ∈ C, n = 0, 1, 2, . . . and bn ∈ C, n = 1, 2, 3, . . .. Moreover, when
f ∈ SH we have a0 = 0, a1 = 1. In the sequel, we assume also g′(0) = b1 with
|b1| = α. Taking into account the condition |ω(z)| < 1, immediately obtains
0 ≤ α < 1. Let

(1.3) ω(z) = c0 + c1z + c2z
2 + · · · (z ∈ D).

According to the relation ω = g′/h′ we have c0 = b1 with |b1| = α. Therefore,
we have

(1.4)
|r − α|

1− αr
≤ |ω(z)| ≤

r + α

1 + αr
,

and

(1.5) |cn| ≤ 1− |c0|
2, |ω′(z)| ≤

1− |ω(z)|2

1− |z|2
(z ∈ D).

see e.g. [4, p. 30, 53].
Let V(k) denote the class of bounded boundary rotation, i.e., a class of

normalized functions f such that

(1.6)

∫ 2π

0

∣∣∣∣Re
(
1 +

reiθf ′′(reiθ

f ′(reiθ

)∣∣∣∣ dθ ≤ kπ,

see [17]. We note that V(k1) ⊂ V(k2) for k1 < k2. We assume k ≥ 2 and if
k ≤ 4, then f is close-to-convex (the converse is not true). Let

(1.7)

Fk(z) =
1

k

[(
1 + z

1− z

)k/2

− 1

]
=

∞∑

n=1

Bn(k)z
n

= z +
k

2
z2 +

k2 + 2

6
z3 + · · · ,

z ∈ D. Then the following estimates holds.

Theorem 1.1 ([11], t.II, pp. 16–25). If f ∈ V(k), then

(1.8) |f(z)| ≤ Fk(r), F ′
k(−r) ≤ |f ′(z)| ≤ F ′

k(r),

and

(1.9) |an| ≤ Bn(k).

In the present paper we introduce the concept of planar harmonic mappings
with the analytic part being a function with bounded boundary rotation.

Definition 1.2. By VH(k) we denote the subclass of SH consisting of all har-
monic mappings of the form f = h+ ḡ for which h ∈ V(k), with normalization
h(0) = g(0) = h′(0)− 1 = 0 and g′(0) = b1, |b1| = α.
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The classes of functions f = h + ḡ with fixed analytic part were studied
previously in the literature. We remain, for example, papers [13], [14], [15]; in
[14] authors studied properties of a subset S̄α

H
of SH consisting of all univalent

anti-analytic perturbations of the identity whereas in [15] the class Ŝα of all
f ∈ SH, such that h is convex, normalized univalent functions.

2. Coefficient and distortion results

Theorem 2.1. Let f be of the form (1.1) with the Taylor expansions (1.2) and
f ∈ VH(k). Then

(2.1) |bn| ≤ αBn(k) +
1− α2

n

n−1∑

p=1

pBp(k),

where Bn(k) are given by (1.7). Specially, we have

(2.2) |b2| ≤
1− α2 + αk

2
, |b3| ≤

(1− α2)(1 + k)

2
+

α(k2 + 2)

6
.

The result is sharp only for the case n = 2.

Proof. By the relation g′ = ωh′ we have

(2.3) nbn =

n−1∑

p=0

(p+ 1)ap+1cn−p−1 = anc0 +

n−1∑

p=1

papcn−p.

Observing that c0 = b1 so that |c0| = |b1| = α, and making use of (1.5), and
|an| ≤ Bn(k) the assertion immediately follows. We note, that the bounds in
(2.1) is sharp only for the case n = 2. Indeed, defining ω(z) = α + (1 − α)z,
h(z) = Fk(z), and applying the relation g′ = ωh′ with g(0) = 0 by integration
we have

g(z) = αFk(z) + (1− α)zFk(z)− (1− α)

∫ z

0

Fk(w)dw.

In a such case b2 = g′′(0)/2 = (1− α2 + αk)/2, that realizes equality for b2 in
(2.2). �

Remark 2.1. The reasoning used in a proof of Theorem 2.1 may be applied
to the bounds of coefficients of any harmonic functions f = h + ḡ, with an
assumption |g′(0)| = α and such that the coefficients of the analytic part h
satisfy |an| ≤ Bn for n ≥ 1 (here h(z) = z+ a2z

2 + · · · ). Such approach is also
presented in [12].

Theorem 2.2. Let f ∈ VH(k). Then

(2.4)

|r − α|

(1− αr)(1 − r2)

(
1− r

1 + r

)k/2

≤ |g′(z)| ≤
(r + α)

(1 + αr)(1 − r2)

(
1 + r

1− r

)k/2

,



806 S. KANAS AND D. KLIMEK-SMȨT

(2.5) |g(z)| ≤
α+ r

k(1 + αr)

(
1− r

1 + r

)k/2

−
1− α2

k

r∫

0

(
1 + t

1− t

)k/2
dr

(1− αt)2
,

(2.6) |g(z)| ≥

∣∣∣∣∣∣
α− r

k(1− αr)

(
1− r

1 + r

)k/2

+
1− α2

k

r∫

0

(
1− t

1 + t

)k/2
dt

(1− αt)2

∣∣∣∣∣∣
,

(2.7)

|f(z)| ≤ Fk(r) +
α+ r

k(1 + αr)

(
1− r

1 + r

)k/2

−
1− α2

k

r∫

0

(
1 + t

1− t

)k/2
dr

(1− αt)2
.

Proof. By the relation g′ = ωh′ we have |g′(z)| = |ω(z)||h′(z)|. The assertion
(2.4) now follows by (1.4) and (1.8).

We note that if ϕ is univalent, and m′(r) ≤ |ϕ′(z)| ≤ M ′(r) (0 ≤ |z| = r < 1)
then

∫ r

0
m′(r)dr ≤ |ϕ(z)| ≤

∫ r

0
M ′(r)dr. Applying this together with (2.4) we

obtain (2.5) and (2.6). �

Remark 2.2. The bounds in (2.5), (2.6) and (2.7) may be represented by the
Appell hypergeometric function F1(a; b1, b2; c;x, y), of two real variables x and
y, when we apply the following

∫ r

0

(
1 + t

1− t

)k/2
dt

(1 − αt)2

=
(−1)k/2

α

[
1

1− αr
F1

(
1;

k

2
,
−k

2
, 2;

1− α

1− αr
,
1 + α

1− αr

)
− F1

(
1;

k

2
,
−k

2
, 2; 1− α, 1 + α

)]
.

Remark 2.3. For the special case k = 1 we recover from Theorem 2.2 the
distortion theorem for the harmonic mappings with analytic part being convex
and univalent function (compare [15]).

3. Pre-Schwarzian derivative

The Schwarzian Sf and pre-Schwarzian Tf derivatives of a holomorphic and
locally univalent function f is defined by

(3.1) Sf =

(
f ′′

f ′

)′

−
1

2

(
f ′′

f ′

)2

= (Tf)
′ − (Tf)

2 /2.

The Schwarzian derivative is a basic tool in complex analysis; it measures the
deviation of f from a Möbius transformation. The hyperbolic sup-norm of Sf

(Tf , respectively) is introduced as follows

||Sf || = sup
z∈D

(1 − |z|2)2|Sf (z)|, ||Tf || = sup
z∈D

(1− |z|2)|Tf (z)|.

Both, the Schwarzian and pre-Schwarzian play a central role in the theory of
Teichmüller spaces, inner radius of univalence, quasiconformal extension, etc.
We quote here one of the most important results.
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Theorem 3.1 (Ahlfors-Weill [1], see also Krauss [16], Nehari [19], Duren and
Lehto [9]). Let f be the function normalized and analytic in the unit disk. If

f is univalent, then ‖Sf‖ ≤ 6. Conversely, if ||Sf || ≤ 2, then f is univalent.

Moreover, let 0 ≤ k < 1. If f extends to a k-quasiconformal mapping of the

Riemann sphere C̄ then ||Sf || ≤ 6k. Conversely, if ‖Sf‖ ≤ 2k, then f extends

to a k-quasiconformal mapping of C̄.

The first problem in the theory of locally univalent harmonic mappings, is
to find a suitable definition of the Schwarzian derivative (the pre-Schwarzian
derivative, respectively). A natural definition, using the differential geometry of
associated minimal surface, has been proposed by Chuaqui, Duren and Osgood
[5], and described by the formula

(3.2) Sf = 2
∂2(log λ)

∂z2
− 2

(
∂(logλ)

∂z

)2

,

where λ = |h′| + |g′|. In the case, when f is analytic, λ = |f ′|, so that
logλ = log f ′/2 + log f̄ ′/2, therefore (3.2) agrees with the classical formula
(3.1). In connection with harmonic Schwarzian derivative we define harmonic
pre-Schwarzian as

(3.3) Tf =
2∂(logλ)

∂z

which, in the analytic case becomes f ′′/f ′, as in (3.1).
We observe that, if g′ = ωh′, then [8, p. 191]

(3.4) Sf = Sh +
2ω̄

1 + |ω|2

(
ω′′ −

ω′h′′

h′

)
− 4

(
ω′ω̄

1 + |ω|2

)2

,

and

(3.5) Tf =
2∂(logλ)

∂z
=

h′′

h′
+

2ω′ω̄

1 + |ω|2
= Th +

2ω′ω̄

1 + |ω|2
.

Also, note that

Sf◦ϕ = (Sf ◦ ϕ)ϕ′2 + Sϕ, Tf◦ϕ = Tf ◦ ϕ+ Tϕ.

The above formulas are generalization of the classical transformation formula
for Schwarzian and pre-Schwarzian under composition.

In this section we find bounds of the norm of pre-Schwarzian derivative for
co-analytic part of harmonic mapping from Sα

H
and VH(k).

Before we prove the next theorems we remain some fact about the cardinals
of polynomials roots. The best known is the classical rule of Descartes-Harriot,
but it is not sufficient for computing the number of roots over a given interval.
This problem was solved by Sturm, however less known but efficient method
was presented by Vincent [20], using continued fractions. The modified Vin-
cent’s theorem e.g. its bisection version due to Alesina and Galuzzi [2] was
presented after almost 200 years, in 2000. This method was next implemented
by Vincent-Akritas-Strzeboński [3] and the continued fractions method for the
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determining the real zeros turns out to be the fastest method derived from
Vincent’s theorem.

Theorem 3.2 (Vincent, [20], bisection version (2000), [2], [3])). Let p(x) be a

polynomial of degree n. There exists a positive quantity δ so that for every pair

of positive rational numbers a, b with |b− a| < δ every transformed polynomial

of the form

V (x) = (1 + x)np

(
a+ bx

1 + x

)

has exactly 0 or 1 variations in the sequence of its coefficients. The second

case is possible if and only if p(x) has a simple root within (a, b). Moreover,

the number of the sign variation is the maximal number of roots in (a, b).

Theorem 3.3. The norm of the harmonic pre-Schwarzian derivative in the

class Sα
H

is bounded by

(3.6) ||Tf || ≤ 2(1− α2)
(1 − r20)(α+ r0)

(1 + αr0)[(1 + α2)(1 + r20)− 4αr0]
,

where r0 is the only root from the interval (0, 1) of the equation

(3.7)
r40(α

4+4α2−1)+4αr30(1−α2)−4r20(α
4+1)+4r0α(α

2−1)+1+4α2−α4 = 0.

Proof. Since h(z) ≡ z then Th ≡ 0 so that

Tf =
2ω′ω̄

1 + |ω|2
.

Making use estimates (1.4), (1.5), we obtain for |z| = r < 1

(3.8) |Tf | ≤
2(1− α2)(α+ r)

(1 + αr)[(1 + α2)(1 + r2)− 4αr]
,

so that

(3.9) ||Tf || ≤ 2(1− α2) sup
0<r<1

(1− r2)(α + r)

(1 + αr)[(1 + α2)(1 + r2)− 4αr]
.

The derivative of the function

G(r) :=
(1− r2)(α + r)

(1 + αr)[(1 + α2)(1 + r2)− 4αr]

is zero, if the function H , given by

H(r) := r4(α4+4α2−1)+4αr3(1−α2)−4r2(α4+1)+4rα(α2−1)+1+4α2−α4

takes its zero for 0 < r < 1. Note, that H(0) = 1 + 4α2 − α4 > 0 and
H(1−) = −4(α2 − 1)2 < 0 then there exists r0 ∈ (0, 1) such, that H(r0) = 0.
We prove the such root of H is unique on (0, 1). It is enough to prove that the
derivative

H ′(r) = 4r3(α4 + 4α2 − 1) + 12αr2(1− α2)− 8r(α4 + 1) + 4α(α2 − 1)
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is negative for 0 < r < 1 and 0 < α < 1. Fix now r, and let L(α) = H ′(r) for
0 < α < 1 and 0 < r < 1, so that

L(α) = (−8r+ 4r3)α4 + (4− 12r2)α3 + 16r3α2 + (−4 + 12r2)α+ (−8r− 4r3).

We note that L(0) = −8r − 4r3 and L(1) = 16r(r2 − 1) < 0. Next, define

V (x) = (1 + x)4L

(
x

1 + x

)
.

Then, we have

V (x) = − 4r(2 + r2)− 4(1 + 8r − 3r2 + 4r3)x

− 4(1 + 8r − 3r2 + 4r3)x2

− 8(1− r)(1 + 5r + 2r2)x3 − 16r(1− r2)x4.

It is easy to check that the sign of the sequence of coefficient of V (x) has the
form (−,−,−,−,−). Therefore there is no sign variation on (0, 1) for every
r ∈ (0, 1). By the Vincent theorem we then conclude that there is no zeros
of polynomial L(α) in the interval (0, 1). Since the function L start from the
negative value L(0), therefore it must be negative in the entire interval, that
implies the negativity of H ′.

Hence, H is decreasing for 0 < r < 1 and 0 < α < 1, and the equation (3.7)
has the only root on the interval (0, 1), which is the only maximum of G on
(0, 1). �

Theorem 3.4. The norm of pre-Schwarzian derivative in the class VH(k) is

bounded by

(3.10) ||Tf || ≤ k + 2r0 +
2(1− α2)(α+ r0)

(1 + αr0)[(1 + α2)(1 + r20)− 4αr0]
,

where r0 is the only root of the equation

(3.11) 2 + 5α2 − 4α4 + α6 − 2rα(5− 2α2 + α4) + r2(−2 + 9α2 − 16α4 + 5α6)

+16r3α3 + r4α2(−7 + 2α2 + α4) + r5(2α− 4α3 − 6α5) + r6(α+ α3)2

on the interval (0, 1).

Proof. Since h ∈ V(k) then |Th| ≤ (k + 2r)/(1− r2), |z| = r < 1, and

|Tf | =

∣∣∣∣Th +
2ω′ω̄

1 + |ω|2

∣∣∣∣ ≤ |Th|+

∣∣∣∣
2ω′ω̄

1 + |ω|2

∣∣∣∣ .

Therefore

||Tf || ≤ sup
0<r<1

(1 − r2)

[
k + 2r

1− r2
+

2(1− α2)(α + r)

(1 + αr)[(1 + α2)(1 + r2)− 4αr]

]
.

The derivative of the right hand function is equal to zero, if

2 + 5α2 − 4α4 + α6 − 2rα(5 − 2α2 + α4) + r2(−2 + 9α2 − 16α4 + 5α6)

+16r3α3 + r4α2(−7 + 2α2 + α4) + r5(2α− 4α3 − 6α5) + r6(α+ α3)2 = 0
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for r ∈ (0, 1). Denote the last polynomial by P (r). Then

P (0) = 2 + 5α2 − 4α4 + α6 = 2 + 4α2(1− α2) + α2 + α6 > 0,

and

P (1) = −8α+ 8α2 + 16α3 − 16α4 − 8α5 + 8α6 = −8α(1− α)(1 − α2)2 < 0,

so that there exists r0 ∈ (0, 1), such that P (r0) = 0. It suffices to prove that
r0 is unique. To claim this we prove that P ′ < 0 for r ∈ (0, 1). Let r ∈ (0, 1)
be now fixed, and denote by Q(α) the derivative P ′(r), that is

Q(α) = − 4r − 10(1− r4)α+ 2r(9 − 14r2 + 3r4)α2

+ (4 + 48r2 − 20r4)α3 + (−32r + 8r3 + 12r5)α4

+ (−2− 30r4)α5 + (10r + 4r3 + 6r5)α6.

We have Q(0) = −4r < 0 and Q(1) = 8(r − 1)3(1 + 4r + 3r2) < 0.
Let S0 be the number of sign variation in the sequence of coefficients of the

polynomial Q(α). Denoting the coefficients of Q(α) by a0, . . . , a6 we have

a0 = −4r < 0,

a1 = −10 + 10r4 < 0,

a2 = 2r(9− 14r2 + 3r4) < 0, or > 0,

a3 = 4 + 48r2 − 20r4 > 0,

a4 = 4r(−8 + 2r2 + 3r4) < 0,

a5 = −2(1 + 15r4) < 0,

a6 = 10r + 4r3 + 6r5 > 0.

Hence the sequence of the sign of the coefficients ai(i = 0, . . . , 6) is (−,−,±,+,
−,−,+), so that the number of sign changes is S0 = 3 for any r ∈ (0, 1). It
means, by the classical rule of Descartes-Harriot, that there are 3 or 1 positive
roots of Q(α). In order to show that there is no zero in (0, 1) we use the Vincent
Theorem. The function

V (α) = (1 + α)6Q

(
α

1 + α

)

has the following coefficients

b0 = −4r < 0,

b1 = −10(1− r4)− 24r < 0,

b2 = −2[(1− r4)(25 + 3r) + 18r + 14r3] < 0,

b3 = −8[3(1− r2)(2 + r3) + 10r3(1− r1) + 6 + r + r3] < 0,

b4 = 8(r − 1)(2 + 9r + 9(1− r2) + 11r3 + 6r4) < 0,

b5 = −8(1− r)[1 + 4(1− r2) + 7r(1 − r) + r3 + 6r4] < 0,
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b6 = 8(r − 1)3(1 + r)(1 + 3r) < 0,

that form the following sequence of sign (−,−,−,−,−,−) with no sign vari-
ations. Thus, by the Vincent Theorem, there are no zeros at (0, 1) for any
r ∈ (0, 1). It means that Q(α) < 0 for every α ∈ (0, 1) and r ∈ (0, 1), equiva-
lently P ′(r) < 0 in (0, 1) that ends the proof. �
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