References
- ANSYS Inc. (2011), ANSYS FLUENT14 User's Guide. Ansys Inc., Southpoint 275 Technology Drive Canonsburg, PA.
- ANSYS Inc. (2011), ANSYS ICEM CFD User Manual. Ansys Inc., Southpoint 275 Technology Drive Canonsburg, PA.
- Batten, P., Goldberg, U. and Chakravarthy, S. (2004), "Interfacing statistical turbulence closures with large-eddy simulation", AIAA J., 42(3), 485-492. https://doi.org/10.2514/1.3496
- Bitsuamlak, G.T., Dagnew, A.K. and Chowdhury, A.G. (2010), "Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility", Wind Struct., 13(1), 21-36. https://doi.org/10.12989/was.2010.13.1.021
- Billson, M., Eriksson, L.E. and Davidson, L. (2004), "Modeling of synthetic anisotropic turbulence and its sound emission", Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, AIAA 2004- 2857, Manchester, United Kingdom.
- Braun, A.L. and Awruch, A.M. (2009), "Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation", Comput. Struct., 87(9-10), 567-581.
- COST (2007), Best practice guideline for the CFD simulation of flows in the urban environment COST Action 732.
- Dagnew, A. and Bitsuamlak, G.T. (2013), "Computational evaluation of wind loads on buildings: a review", Wind Struct., 16(6), 629-660. https://doi.org/10.12989/was.2013.16.6.629
- Dagnew A. and Bitsuamlak, G.T. (2010), "LES evaluation of external wind pressures on a standard tall building with and without a neighbouring building", Proceedings of the 5th International Symposium on Computational Wind Engineering (CWE2010), May 2010.
- Dagnew, A.K., Bitsuamalk, G.T. and Ryan, M. (2009), "Computational evaluation of wind pressures on tall buildings", Proceedings of the 11th American Conference on Wind Engineering, San Juan, Puerto Rico, June 20-26.
- Davidson, L. (2007), "Using isotropic synthetic fluctuations as inlet boundary conditions for unsteady simulations", Adv. Appl. Fluid Mech., 1(1), 1-35.
- Davidson, L. (2009), "Hybrid LES-RANS: back scatter from a scale-similarity model used as forcing", Philos. T. R. Soc. A, 367, 2905-2915. https://doi.org/10.1098/rsta.2008.0299
- Franke. J. (2006), Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment.
- Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1996), "Dynamic subgrid-scale eddy viscosity model", Proceedings of the Summer Workshop. Center for Turbulence Research, Stanford, CA.
- Huang, S., Li, Q.S. and Xu, S. (2007), "Numerical evaluation of wind effects on a tall steel building by CFD", J. Constr. Steel Res., 63(5), 612-627. https://doi.org/10.1016/j.jcsr.2006.06.033
- Huang, S.H., Li, Q.S. and Wu, J.R. (2010), "A general inflow turbulence generator for large eddy simulation", J. Wind Eng. Ind. Aerod., 98(10-11), 600-617. https://doi.org/10.1016/j.jweia.2010.06.002
- Huang, S.H. and Li, Q.S. (2010), "Large eddy simulation of wind effects on a super-tall building", Wind Struct., 13(6), 557-580. https://doi.org/10.12989/was.2010.13.6.557
- Kataoka, H. and Mizuno, M., (2002), "Numerical flow computation around aeroelastic 3D square cylnder using inflow turbulence", Wind Struct., 5 (2-4), 379-392. https://doi.org/10.12989/was.2002.5.2_3_4.379
- Khanduri, A.C., Stathopoulos, T. and Bedard, C. (1998), "Wind-induced interference effects on buildings-a review of the state-of-art", Eng. Struct., 20, 617-630. https://doi.org/10.1016/S0141-0296(97)00066-7
- Kraichnan, R.H. (1970), "Diffusion by a random velocity field", Phys. Fluids, 13(1), 22-31. https://doi.org/10.1063/1.1692799
- Lam, K.M. and To, A.P. (2006), "Reliability of numerical computation of pedestrian-level wind environment around a row of tall buildings", Wind Struct., 9(6), 473-492 https://doi.org/10.12989/was.2006.9.6.473
- Leonard, B.P. (1991), "The ultimate conservative difference scheme applied to unsteady one-dimensional advection", Comput. Method. Appl. M., 88(1), 17-74. https://doi.org/10.1016/0045-7825(91)90232-U
- Lilly, D.K. (1992), "A Proposed Modification of the Germano subgrid-scale closure model", Phys. Fluids, 4. 633-635. https://doi.org/10.1063/1.858280
- Lund, T.S., Wu, X. and Squires, K.D. (1998), "Generation of turbulent inflow data for spatially-developing boundary layer simulations", J. Comput. Phys., 140, 233-258. https://doi.org/10.1006/jcph.1998.5882
- Martinuzzi, R. and Tropea, C. (1993), "The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow", J. Fluids Eng. - T ASME, 115(1), 85-92.
- Melbourne, W.H. (1980), "Comparison of measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6(1-2), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9
- Murakami, S. (1998), "Overview of turbulence models applied in CWE-1997", J. Wind Eng. Ind. Aerod., 74-76, 1-24. https://doi.org/10.1016/S0167-6105(98)00004-X
- Nozawa, K. and Tamura, T. (2002), "Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer", J. Wind Eng. Ind. Aerod., 90(10), 1151-1162. https://doi.org/10.1016/S0167-6105(02)00228-3
- Nozawa, K. and Tamura, T. (2003), "Numerical prediction of pressure on a high-rise building immersed in a turbulent boundary layer using LES", Proceedings of the annual meeting of JACWE 95.
- Obasaju, E.D. (1992), "Measurement of forces and base overturning moments on the CAARC tall building model in a simulated atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 40(2), 103-126. https://doi.org/10.1016/0167-6105(92)90361-D
- Sagaut, P. and Deck, S. (2009), "Large eddy simulation for aerodynamics: Status and perspectives", Philos. T. R. Soc. A, 367(1899), 2849-2860. https://doi.org/10.1098/rsta.2008.0269
- Senthooran, S., Lee, D. and Parameswaran, S. (2004), "A computational model to calculate the flow-induced pressure fluctuations on buildings", J. Wind Eng. Ind. Aerod., 92(13), 1131-1145. https://doi.org/10.1016/j.jweia.2004.07.002
- Shah, K.B. and Ferziger, J.H. (1997), A fluid mechanics view of wind engineering: large eddy simulation of flow over a cubical obstacle, (Eds., Meroney, R.N. and Bienkiewicz, B.), Computational Wind Engineering, 2, 211-226, Elsevier, Amsterdam.
- Shinozuka M. (1985), Lecture at CISM course on stochastic methods in structural engineering, International Centre for Mechanical Science, Udine.
- Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures, John Wiley & Sons, New York, N.Y.
- Smirnov, R., Shi, S. and Celik, I., (2001), "Random flow generation technique for large eddy simulations and particle-dynamics modeling", J. Fluid. Eng. - T ASME 123(2), 359-371. https://doi.org/10.1115/1.1369598
- Swaddiwudhipong, S., Anh, T.T.T., Liu, Z.S. and Hua, J. (2007), "Modeling of wind load on single and staggered dual buildings", Eng. Computers, 23(3), 215-22. https://doi.org/10.1007/s00366-007-0061-2
- Tabor, G.D. and Baba-Ahmadi. M.H. (2009), "Inlet condition for large eddy simulation: a review", Comput. Fluids, 39 (4), 553-567.
- Tamura, T. (2008), "Towards practical use of LES in wind engineering", J. Wind Eng. Ind. Aerod., 96(10-11), 1451-1471. https://doi.org/10.1016/j.jweia.2008.02.034
- Tamura, T., Nozawa, K. and Kondo, K. (2008), "AIJ guide for numerical prediction of wind loads on buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1974-1984. https://doi.org/10.1016/j.jweia.2008.02.020
-
Tominaga, Y., Mochida, A., Murakami, S. and Sawaki, S. (2008), "Comparison of various revised k-
$\varepsilon$ models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer", J. Wind Eng. Ind. Aerod., 96(4), 389-411. https://doi.org/10.1016/j.jweia.2008.01.004 - Tucker, P.G. and Lardeau, S. (2009), "Applied large eddy simulation", Philos. T. R. Soc., 367(1899), 2809-2818. https://doi.org/10.1098/rsta.2009.0065
- Wright, N.G. and Easom, G.J. (2003), "Non-linear k-e turbulence model results for flow over a building at full-scale", Appl. Math. Model., 27(12), 1013-1033. https://doi.org/10.1016/S0307-904X(03)00123-9
- Zhang, A. and Gu, M. (2008), "Wind tunnel tests and numerical simulations of wind pressures on buildings in staggered arrangement", J. Wind Eng. Ind. Aerod., 96(10-11), 2067-2079. https://doi.org/10.1016/j.jweia.2008.02.013
Cited by
- Large eddy simulation of the neutral atmospheric boundary layer: performance evaluation of three inflow methods for terrains with different roughness vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.11.025
- A combination method to generate fluctuating boundary conditions for large eddy simulation vol.20, pp.4, 2015, https://doi.org/10.12989/was.2015.20.4.579
- Wind loads and structural response: Benchmarking LES on a low-rise building vol.144, 2017, https://doi.org/10.1016/j.engstruct.2017.04.027
- Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings vol.142, 2015, https://doi.org/10.1016/j.jweia.2015.04.004
- LES evaluation of wind-induced responses for an isolated and a surrounded tall building vol.115, 2016, https://doi.org/10.1016/j.engstruct.2016.02.026
- Preconditioning technique for a simultaneous solution to wind-membrane interaction vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.349
- Variations in wind load on tall buildings due to urban development vol.34, 2017, https://doi.org/10.1016/j.scs.2017.06.008
- Enhancing wind performance of tall buildings using corner aerodynamic optimization vol.136, 2017, https://doi.org/10.1016/j.engstruct.2017.01.019
- Numerical simulation of the effects of building dimensional variation on wind pressure distribution vol.11, pp.1, 2017, https://doi.org/10.1080/19942060.2017.1281845
- Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations vol.16, 2018, https://doi.org/10.1016/j.jobe.2018.01.004
- Numerical analysis of convective heat transfer coefficient for building facades pp.1744-2583, 2019, https://doi.org/10.1177/1744259118791207
- Large-eddy simulation evaluation of wind loads on a high-rise building based on the multiscale synthetic eddy method pp.2048-4011, 2018, https://doi.org/10.1177/1369433218794258
- Multiobjective Aerodynamic Optimization of Tall Building Openings for Wind-Induced Load Reduction vol.144, pp.10, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002199
- Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings vol.30, pp.6, 2014, https://doi.org/10.12989/was.2020.30.6.597
- Performance-based wind design of tall buildings: concepts, frameworks, and opportunities vol.31, pp.2, 2020, https://doi.org/10.12989/was.2020.31.2.103
- Wind engineering for high-rise buildings: A review vol.32, pp.3, 2014, https://doi.org/10.12989/was.2021.32.3.249