DOI QR코드

DOI QR Code

Effect of Zinc Ion Containing ZDBC on the Vulcanization and Mechanical Properties of Silica Filled Natural Rubber

아연이온이 포함된 ZDBC 촉진제가 실리카로 충전된 천연고무 복합소재의 가황 및 물성에 미치는 영향

  • Received : 2013.11.19
  • Accepted : 2013.12.27
  • Published : 2014.05.25

Abstract

Zinc ion containing thiuram type accelerator zinc dibutyldithiocarbamate (ZDBC) was compared to other thiuram type accelerators (tetramethylthiuram disulfide (TMTD) and dipentamethylenethiuram tetrasulfide (DPTT)) in silica filled natural rubber (NR) compound upon vulcanization and mechanical properties (modulus, tensile strength, and elongation %). ZDBC added compound showed the fastest cure time (t10) and the highest reinforcement index (R.I.) among them and showed a marching behavior. The mechanism was reviewed and a new mechanism was proposed.

아연이온이 포함된 thiuram 구조를 가진 zinc dibutyldithiocarbamate(ZDBC)와 아연이온을 포함하고 있지 않은 thiuram계 촉진제인 tetramethylthiuram disulfide(TMTD), dipentamethylenethiuram tetrasulfide(DPTT)를 실리카가 충전된 천연고무에 첨가하여 가황특성 및 기계적 물성(모듈러스, 인장강도, 신장률)에 미치는 영향을 비교 평가하였다. ZDBC는 가장 빠른 반응개시시간(t10)과 높은 보강성(R.I.), 그리고 marching 거동을 보였다. 메커니즘을 고찰하고 제시하였다.

Keywords

References

  1. A. Y. Coran, Rubber Chem. Technol., 38, 1 (1965). https://doi.org/10.5254/1.3535628
  2. C. Goodyear, U.S. Patent 3,633 (1844).
  3. L. Bateman, C. G. Moore, M. Porter, and B. Saville, The Chemistry and Physics of Rubber like Substances, John Wiley and Sons, New York, 1963.
  4. A. Y. Coran, Science and Technology of Rubber, Academic Press, New York, 2005.
  5. M. P. Wagner, Rubber Chem. Technol., 49, 703 (1976). https://doi.org/10.5254/1.3534979
  6. R. Rauline, Michelin, Eur. Patent EP0501, 227 (1991).
  7. K. J. Kim and J. Vanderkooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
  8. R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, 2009.
  9. K. J. Kim and J. Vanderkooi, Composite Interfaces, 11, 471 (2004). https://doi.org/10.1163/1568554042722946
  10. K. J. Kim and J. Vanderkooi, Rubber Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  11. K. J. Kim and J. Vanderkooi, J. Appl. Polym. Sci., 95, 623 (2005). https://doi.org/10.1002/app.21373
  12. S. M. Kim and K. J. Kim, Polymer(Korea), 36, 637 (2012).
  13. S. M. Kim and K. J. Kim, Polymer(Korea), 36, 235 (2012).
  14. S. M. Kim and K. J. Kim, Polymer(Korea), 37, 269 (2013).
  15. K. J. Kim, Asian J. Chem., 25, 5119 (2013).
  16. K. J. Kim and S. G. Shin, Dongah Tire & Rubber, Korea Patent 10-13195910000 (2013).
  17. T. R. Barbee, R. D. Davis, A. J. Dias, S. W. Mowry, and M. B. Rodgers, ExxonMobil Chemical, Eur. Patent EP2,231,766 (2008).
  18. K. J. Kim and J. Vanderkooi, Int. Polym. Proc., 17, 192 (2002). https://doi.org/10.3139/217.1700
  19. N. Hewitt, Compounding Precipitated Silica in Elastomers, William Andrew Inc., New York, 2007.
  20. A. Y. Coran, Rubber Chem. Technol., 37, 679 (1964). https://doi.org/10.5254/1.3540360
  21. R. H. Campbell and R. W. Wise, Rubber Chem. Technol., 37, 635 (1964). https://doi.org/10.5254/1.3540356
  22. A. N. Gent, Engineering with Rubber: How to Design Rubber Components, Hanser, Munich, 2001.
  23. J. S. Dick and R. A. Annicelli, Rubber Technology: Compounding and Testing for Performance, Hanser, Munich, 2001.
  24. K. J. Kim and J. VanderKooi, J. Ind. Eng. Chem., 10, 772 (2004).
  25. M. M. Coleman, J. R. Shelton, and J. K. Koening, Rubber Chem. Technol., 46, 938 (1973). https://doi.org/10.5254/1.3547419
  26. Harwick Standard, Rubber World, 244, 123 (2013).