DOI QR코드

DOI QR Code

Adhesion Force Measurements of Nano-Imprint Materials Using Atomic Force Microscope

원자력현미경을 이용한 나노임프린트 재료의 접착력 측정

  • Yun, Hyeong Seuk (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University) ;
  • Lee, Mongryong (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University) ;
  • Song, Kigook (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
  • 윤형석 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터) ;
  • 이몽룡 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터) ;
  • 송기국 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터)
  • Received : 2013.12.05
  • Accepted : 2014.01.07
  • Published : 2014.05.25

Abstract

Adhesion forces between acrylate imprinting resin and a surface treated atomic force microscope (AFM) tip were investigated. Compared to the untreated silicon tip, 38% of the adhesion force is reduced for the hydrophobic tip treated with $CH_4$ plasma whereas 1.6 time increases is found for the hydrophilic tip with $O_2$ plasma treatment. Such a measurement of the adhesion force using AFM provides very quantitative results on adhesion comparing to the crosscut adhesion test which gives qualitative results. Since the adhesion area becomes larger as the imprinting pattern size gets smaller, the surface treatment issue becomes more important in the nano-imprinting process.

원자력현미경(AFM) tip을 표면 처리하여 임프린트용 acrylate 레진과의 접착력을 측정하였다. 표면 처리를 하지 않은 실리콘 tip에 비하여 $CH_4$ 플라즈마로 소수성 처리한 경우 접착력은 38% 감소한 반면 친수성의 $O_2$ 플라즈마로 처리한 경우에는 접착력이 1.6 배 증가하였다. 이러한 AFM 결과들은 정성적 실험 결과 밖에 얻을 수 없는 cross-cut 접착실험에 비하여 매우 구체적인 정량적 결과들을 제공하였다. 나노 크기의 임프린트 패턴을 전사하는 경우, 몰드와 레진 사이 접촉 면적이 커져서 시료 전체의 접착력이 커지기 때문에 패턴 크기가 작아지는 나노임프린트 공정에서는 몰드 표면 처리 문제가 더욱 중요하게 되는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995). https://doi.org/10.1063/1.114851
  2. J. Haisma, M. Verheijen, and K. Heuvel, J. Vac. Sci. Technol. B, 14, 4124 (1996). https://doi.org/10.1116/1.588604
  3. M. Austin, H. Ge, W. Wu, M. Li, and Z. Yu, Appl. Phys. Lett., 84, 5229 (2004).
  4. D. Morihara, H. Hiroshima, and Y. Hirai, Microelectron. Eng., 86, 684 (2009). https://doi.org/10.1016/j.mee.2008.12.005
  5. S. Thoms, D. S. Macintyre, D. Moran, and I. Thayne, J. Vac. Sci. Technol. B, 22, 3271 (2004). https://doi.org/10.1116/1.1821504
  6. H. C. Scheer, H. Schulz, T. Hoffmann, and C. M. Sotomayer Torres, J. Vac. Sci. Technol. B, 16, 3927 (1998).
  7. Y. Hirai, S. Yoshida, and Y. Tanaka, J. Vac. Sci. Technol. B, 21, 2765 (2003). https://doi.org/10.1116/1.1629289
  8. T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, J. Vac. Sci. Technol. B, 18, 3575 (2000).
  9. Y. Hirai, N. Takagi, S. Harada, and Y. Tanaka, Sens. Micromach. Soc., 122, 404 (2002).
  10. H. Scheer, H. Schultz, T. Holffmann, and C. Torres, J. Vac. Sci. Technol. B, 16, 3917 (1998). https://doi.org/10.1116/1.590436
  11. J. Jeong, Y. Sim, H. Sohn, and E. Lee, Microelectron. Eng., 75, 5299 (2006).
  12. D. Choi, J. Jeong, Y. Sim, E. Lee, W. Kim, and B. Bea, Langmuir, 21, 9390 (2005). https://doi.org/10.1021/la0513205
  13. S. Kim, S. Park, S. Moon, W. Lee, and K. Song, Polymer(Korea), 36, 536 (2012).
  14. Vladimir V. Tsukruk and Valery N. Bliznyuk, Langmuir, 14, 446 (1998). https://doi.org/10.1021/la970367q
  15. J. P. Cleveland and S. Manne, Rev. Sci. Instrum., 64, 403 (1993). https://doi.org/10.1063/1.1144209
  16. G. Y. Jung, W. Wu, Z. Li, Y. Chen, S. Y. Wang, W. M. Tong, and R. S. Williams, Langmuir, 21, 1158 (2005). https://doi.org/10.1021/la0476938
  17. A. Schirmeisen, D. Weiner, and H. Fuchs, Surf. Sci., 545, 155 (2003). https://doi.org/10.1016/j.susc.2003.09.013
  18. M. Arif Butt, A. Chughtai, J. Ahmad, R. Ahmad, U. Majeed, and I. H. Khan, J. Faculty. Eng. Tech., 15, 21 (2008).
  19. S. E. Lee, H. G. Lim, S. S. Lee, D. G. Choi, D. Lee, and S. U. Hong, Macromol. Res., 21, 916 (2013). https://doi.org/10.1007/s13233-013-1107-5
  20. C. W. Lee, B. K. Song, J. Jegal, and Y. Kimura, Macromol. Res., 21, 1305 (2013). https://doi.org/10.1007/s13233-013-1181-8
  21. W. C. Wask, Polymer, 19, 291 (1978). https://doi.org/10.1016/0032-3861(78)90223-9
  22. C. C. Chen and C. H. Chen, Opt. Rev., 16, 416 (2009). https://doi.org/10.1007/s10043-009-0080-x