DOI QR코드

DOI QR Code

Hydrophilization of a Porous Polytetrafluoroethylene Supporter by Radiation Grafting Poly(Acrylonitrile-co-Sodium Allylsulfonate)

Acrylonitrile/Sodium Allylsulfonate 공중합체 방사선 접목을 이용한 다공성 Polytetrafluoroethylene 지지체의 친수화

  • Park, Byeong-Hee (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Sohn, Joon-Yong (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Yoon, Ki-Suk (Department of Polymer Science and Engineering, College of Engineering, Chungnam National University) ;
  • Shin, Junhwa (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 박병희 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 손준용 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 윤기석 (충남대학교 공과대학 고분자공학과) ;
  • 신준화 (한국원자력연구원 첨단방사선연구소 공업환경연구부)
  • Received : 2013.10.29
  • Accepted : 2013.12.30
  • Published : 2014.05.25

Abstract

We prepared hydrophilic porous supporters for the reinforced composite fuel cell membrane by radiation grafting of acrylonitrile (AN) and hydrophilic sodium allylsulfonate (SAS) into a porous polytetrafluoroethylene (PTFE) supporter. The physicochemical properties of the supporters prepared under various reaction conditions such as molar ratio of SAS/AN, monomer concentration, and irradiation dose were evaluated. FTIR was utilized to confirm the successful introduction of SAS/AN copolymer chains into the porous PTFE. The pores of the porous PTFE film were found to be decreased with an increase in the degree of grafting by using FE-SEM and gurley number. Furthermore, by analyzing the degree of grafting, contact angle, and TBO (toluidine blue O) uptake, the hydrophilicity of the prepared supporters was found to increase with an increase in the degree of grafting.

본 연구에서는 방사선을 이용하여 다공성 polytetrafluoroethylene(PTFE) 지지체에 acrylonitrile(AN)과 친수성 작용기를 가진 sodium allylsulfonate(SAS)를 접목시켜 복합 연료전지막의 지지체로 사용되는 친수화 다공성 지지체를 제조하였다. SAS/AN의 몰비율, 단량체 농도, 방사선의 조사선량에 변화를 주어 제조된 지지체의 물성을 평가하였다. 제조된 지지체의 FTIR 분석을 통하여 각 단량체들이 다공성 PTFE 지지체에 성공적으로 그래프팅되었음을 확인하였다. 또한 FE-SEM과 gurley number 측정을 이용하여 그래프트율이 증가할수록 지지체 표면의 기공이 감소하는 것을 관찰하였고, 그래프트율, 접촉각, TBO(toluidine blue O) uptake 분석을 통해 그래프트율이 증가됨에 따라 제조된 지지체의 친수화도가 증가하는 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. J. Park, K. H. Choi, and S. J. Lee, J. Kor. Inst. Chem. Eng., 35, 21 (1997).
  2. J. H. Yang and J. S. Park, J. Korean Soc. Aeronaut. Space Sci., 39, 400 (2011).
  3. K. H. Kim, S. Y. Ahn, and Y. C. Lee, Electrochim. Acta, 50, 577 (2004). https://doi.org/10.1016/j.electacta.2004.03.051
  4. T. Tezuka, K. Tadanaga, and A. Matsuda, Electrochem. Commun., 7, 245 (2005). https://doi.org/10.1016/j.elecom.2005.01.009
  5. H. Munakata, D. Yamamoto, and K. Kanamura, Chem. Commun., 31, 3986 (2005).
  6. T. Nguyen and X. Wang, J. Power Sources, 195, 1024 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.049
  7. M. P. Rodgers, J. Berring, S. Holdcroft, and Z. Shi, J. Membr. Sci., 321, 100 (2008). https://doi.org/10.1016/j.memsci.2008.01.007
  8. K. M. Nouel and P. S. Fedkiw, Elctrochim. Acta, 43, 2381 (1998). https://doi.org/10.1016/S0013-4686(97)10151-7
  9. E. T. Kang and Y. Zhang, Adv. Mater., 12, 1481 (2000). https://doi.org/10.1002/1521-4095(200010)12:20<1481::AID-ADMA1481>3.0.CO;2-Z
  10. H. Tang, X. Wang, and F. Wang, J. Membr. Sci., 306, 298 (2007). https://doi.org/10.1016/j.memsci.2007.09.008
  11. Z. Jie, T. Haolin, and P. Mu, J. Membr. Sci., 312, 41 (2008). https://doi.org/10.1016/j.memsci.2007.12.025
  12. T. L. Yu, H.-L. Lin, and K.-S. Shen, J. Polym. Res., 11, 217 (2004). https://doi.org/10.1023/B:JPOL.0000043408.24885.c6
  13. H.-L. Lin, T. L. Yu, and K.-S. Shen, J. Membr. Sci., 237, 1 (2004). https://doi.org/10.1016/j.memsci.2004.01.021
  14. S.-Y. Ahn, Y.-C. Lee, and I.-H. Oh, Electrochim. Acta, 50, 571 (2004). https://doi.org/10.1016/j.electacta.2004.01.133
  15. H. Tang, M. Pan, and S. P. Jiang, Electrochim. Acta, 52, 5304 (2007). https://doi.org/10.1016/j.electacta.2007.02.031
  16. X. Zhu, H. Zhang, and Y. Liang, J. Mater. Chem., 17, 386 (2007). https://doi.org/10.1039/b611690f
  17. J. Y. Sohn, B. H. Park, and J. H. Shin, Polymer(Korea), 37, 1 (2013).
  18. C. M. Chan and T. M. Ko, Surf. Sci. Rep., 24, 1 (1996). https://doi.org/10.1016/0167-5729(96)80003-3
  19. R. C. Chatelier, X. Xie, and H. J. Griesser, Langmuir, 11, 2585 (1995). https://doi.org/10.1021/la00007a043
  20. A. Prado, N. Briz, and H. Reinecke, Analyst, 137, 5666 (2012). https://doi.org/10.1039/c2an35659g
  21. S. Sano, K. Kato, and Y. Ikada, Biomaterials, 14, 871 (1993). https://doi.org/10.1016/0142-9612(93)90010-Y
  22. X. Zhan, J. Wu, and B. J Hinds, Nanoscale Res. Lett., 8, 279 (2013). https://doi.org/10.1186/1556-276X-8-279
  23. Z. Izumi, H. Kiuchi, and M. Watanabe, J. Polym. Sci., 3, 2965 (1965).
  24. J. Zu, M. Wu, and J. Zhang, J. Appl. Polym. Sci., 99, 3401 (2006). https://doi.org/10.1002/app.23032
  25. R. Li, H. Wang, and Y. Ye, Radiat. Phys. Chem., 91, 132 (2013). https://doi.org/10.1016/j.radphyschem.2013.05.034
  26. M. H. Kim, Y. M. Ha, and M. S. Khil, Tex. Sci. Eng., 49, 402 (2012). https://doi.org/10.12772/TSE.2012.49.6.402
  27. H. K. Shin, J. P. Jeun, and P. H. Kang, Fiber. Polym., 13, 724 (2012). https://doi.org/10.1007/s12221-012-0724-5
  28. L. S. Kravchuk, V. Z. Radkevich, and G. N. Lysenko, Fiber. Chem., 35, 134 (2003). https://doi.org/10.1023/A:1024846614078
  29. M. M. Nasef, N. A. Zubir, and A. F. Ismail, J. Membr. Sci., 268, 96 (2006). https://doi.org/10.1016/j.memsci.2005.06.009
  30. S. G. Kang, D. H. Peck, and S. K. Kim, J. Kor. Electrochem. Soc., 12, 173 (2009). https://doi.org/10.5229/JKES.2009.12.2.173