DOI QR코드

DOI QR Code

Tissue Engineered Catilage Reconstruction with Alginate Sponge Containing Demineralized Bone Particles

탈미네랄골분이 첨가된 알지네이트 스펀지에서 조직공학적 연골 재건

  • Kim, Hye Min (Dept. of BIN Fusion Tech, Polymer Fusion Res Center & Dept. of PolymerNano Sci Tech, Chonbuk National University) ;
  • Park, Jin Young (Dept. of BIN Fusion Tech, Polymer Fusion Res Center & Dept. of PolymerNano Sci Tech, Chonbuk National University) ;
  • Kim, Eun Young (Dept. of BIN Fusion Tech, Polymer Fusion Res Center & Dept. of PolymerNano Sci Tech, Chonbuk National University) ;
  • Song, Jeong Eun (Dept. of BIN Fusion Tech, Polymer Fusion Res Center & Dept. of PolymerNano Sci Tech, Chonbuk National University) ;
  • Kwon, Soon Yong (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Chung, Jin Wha (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech, Polymer Fusion Res Center & Dept. of PolymerNano Sci Tech, Chonbuk National University)
  • 김혜민 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 박진영 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 김은영 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 송정은 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 권순용 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 정진화 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자나노공학과)
  • Received : 2013.10.22
  • Accepted : 2013.12.06
  • Published : 2014.05.25

Abstract

Demineralized bone particles (DBP) and alginate hybrid sponges were fabricated at 10, 20, 40 and 80% DBP/alginate hybrid ratios for seeding chondrocyte. Cell proliferation was measured via MTT assay. Morphological observation, histology, biological assay and RT-PCR were performed at each time point 1, 2 and 3 weeks. The cell viability was better in 20% DBP/alginate sponges than in other sponges. SEM results showed that more attached and more proliferated cells in the 20% DBP/alginate sponges with the lapse of time. Finally, histochemical assay results showed that the phenotype of chondrocyte was well maintained and both acidic mucopolysaccharide and type II collagen was well formed at 20% sponges. This study suggested that DBP/alginate sponge may serve as a potential cell delivery vehicle and a structural basis for tissue engineered articular cartilage.

알지네이트와 탈미네랄골분(DBP) 하이브리드 스펀지는 각각 DBP가 0, 10, 20, 40 및 80% 첨가된 스펀지로, 연골 재건을 위해 제작되었다. 세포의 증식은 MTT를 통해 관찰했으며, 형태학적, 조직학적, 생물학적 관찰 그리고 RT-PCR을 1, 2, 및 3 주에 실시하였다. 세포생존율에 있어서 20% DBP/알지네이트 스펀지에서 다른 스펀지보다도 가장 좋은 결과를 보였으며, 광학전자현미경 관찰에서 또한 20% 스펀지에서 가장 좋은 세포부착률과 증식률을 확인하였다. 마지막으로, 조직학적 평가에서 20% 스펀지에서 연골세포의 표현형이 가장 잘 유지됨과 동시에 산성뮤코 다당류와 제2형 콜라겐이 잘 형성된 것을 확인하였다. 이로써 DBP/알지네이트 하이브리드 스펀지는 연골 조직공학을 위한 지지체로써 활용될 수 있을 것이다.

Keywords

References

  1. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, Tissue Eng., 7, 679 (2001). https://doi.org/10.1089/107632701753337645
  2. D. W. Hutmacher, Biomaterials, 21, 2529 (2000). https://doi.org/10.1016/S0142-9612(00)00121-6
  3. K. Y. Lee and D. J. Mooney, Am. Chem. Soc., 101, 1069 (2001).
  4. Z. Lin, C. Willers, J. Xu, and M. H Zheng, Tissue Eng., 12, 1971 (2006). https://doi.org/10.1089/ten.2006.12.1971
  5. N. Isogai, H. Kusuhara, V. Ikada, H. Ohtani, R. Jacquet, J. Hillyer, E. Lowder, and W. J. Landis, Tissue Eng., 12, 691 (2006). https://doi.org/10.1089/ten.2006.12.691
  6. S. Vijayan, W. Bartlett, G. Bentley, R. W. Carrington, J. A. Skinner, R. C. Pollock, M. Alorjani, and T. W. Briggs, J. Bone Joint Surg Br., 94, 488 (2012).
  7. J. M. Pestka, G. M. Salzmann, N. P. Sudkamp, and P. Niemeyer, Z. Orthop. Unfall., 151, 278 (2013). https://doi.org/10.1055/s-0032-1328494
  8. M. A. Accardi, S. D. McCullen, A. Callanan, S. Chung, P. M. Cann, M. M. Stevens, and D. Dini, Tissue Eng. Part A, 19, 2300 (2013). https://doi.org/10.1089/ten.tea.2012.0580
  9. P. M. van der Kraan and W. B. van den Berg, Osteoarthr. Cartilage, 20, 223 (2012). https://doi.org/10.1016/j.joca.2011.12.003
  10. R. A. A. Muzzarelli, F. Greco, A. Busilacchi, V. Sollazzo, and A. Gigante, Carbohyd. Polym., 89, 723 (2012). https://doi.org/10.1016/j.carbpol.2012.04.057
  11. K. E. Benders, P. R. van Weeren, S. F. Badylak, D. B. Saris, W. J. Dhert, and J. Malda, Trends Biotechnol., 31, 169 (2013). https://doi.org/10.1016/j.tibtech.2012.12.004
  12. E. M. Darling and K. A. Athanasiou, J. Orthop. Res., 23, 425 (2005). https://doi.org/10.1016/j.orthres.2004.08.008
  13. J. E. Barralet, L. Wang, M. Lawson, J. T. Triffitt, P. R. Cooper, and R. M. Shelton, J. Mater. Sci. Mater. Med., 16, 515 (2005). https://doi.org/10.1007/s10856-005-0526-z
  14. T. Kimura, N. Yasui, S. Ohsawa, and K. Ono, Clin. Orthop. Relat. Res., 186, 231 (1984).
  15. C. Bassleer, P. Gysen, J. M. Foidart, R. Bassleer, and P. Franchimont, In Vitro Cell Dev. Biol., 22, 113 (1986). https://doi.org/10.1007/BF02623497
  16. B. Beekman, N. Verzijl, R. A. Bank, K. von der Mark, and J. M. Tekoppele, Exp. Cell Res., 237, 135 (1997). https://doi.org/10.1006/excr.1997.3771
  17. K. A. Mehta, M. S. Kislalioglu, W. Phuanpradit, A. W. Malick, and N. H. Shah, J. Control. Release, 63, 201 (2000). https://doi.org/10.1016/S0168-3659(99)00193-5
  18. E. J. Caterson, W. J. Li, L. J. Nesti, T. Albert, K. Danielson, and R. S. Tuan, Ann. N. Y. Acad. Sci., 961, 134 (2002). https://doi.org/10.1111/j.1749-6632.2002.tb03066.x
  19. H. H. Tonnesen and J. Karksen, Drug. Dev. Ind. Pharm., 28, 621 (2002). https://doi.org/10.1081/DDC-120003853
  20. I. J. Kim, H. W. Kang, and C. N. Jeong, Polymer(Korea), 27, 195 (2003).
  21. O. Smidsrod and G. Skjak-Braek, Trend Biotechnol., 8, 71 (1998).
  22. M. R. Urist, Science, 150, 893 (1965). https://doi.org/10.1126/science.150.3698.893
  23. C. B. Huggins and M. R. Urist, Science, 167, 896 (1970). https://doi.org/10.1126/science.167.3919.896
  24. S. H. Kim, K. S. Park, B. S. Choi, H. J. Ha, J. M. Rhee, M. S. Kim, Y. S. Yang, H. B. Lee, and G. Khang, Adv. Exp. Med. Biol., 585, 167 (2006).
  25. Y. M. Lee, C. R. Shim, Y. J. Lee, J. E. Song, J. W. Bea, Y. L. Kim, D. Lee, and G. Khang, Inter. J. Tissue Regen., 3, 13 (2012).
  26. C. R. Shim, Y. J. Lee, H. A. Ko, M. J. Kim, J. W. Bae, J. H. Lee, J. E. Song, and G. Khang, Inter. J. Tissue Regen., 3, 50 (2012).
  27. S. J. Yoon, S. H. Kim, H. J. Ha, Y. K. Ko, J. W. So, M. S. Kim, I. Y. Yang, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Part A, 14, 539 (2008). https://doi.org/10.1089/tea.2007.0129
  28. M. Otterlei, A. Sundan, G. Skjak-Braek, L. Ryan, O. Smidsrod, and T. Espevik, Infect Immun., 61, 1917 (1993).
  29. H. Y. Lin and C. T. Yeh, J. Mater. Sci: Mater. Med., 21, 1611 (2010). https://doi.org/10.1007/s10856-010-4028-2
  30. C. G. van Hoogmoed, H. J. Busscher, and P. de Vos, J. Biomed. Mater. Res. A, 67, 172 (2003).
  31. J. P. Soares, J. E. Santos, G. O. Chierice, and E. T. G. Cavalheiro, Ecletica Quimica, 29, 57 (2004). https://doi.org/10.1590/S0100-46702004000200009
  32. E. H. Jo, Y. J. Kim, H. Yu, S. C. Yoo, Y. S. Kang, D. Lee, and G. Khang, Inter. J. Tissue Regen., 1, 46 (2010).
  33. T. G. Tienen, R. G. Heijkants, P. Buma, J. H. Groot, A. J. Pennings, and R. P. Veth, Biomaterials, 23, 1731 (2002). https://doi.org/10.1016/S0142-9612(01)00280-0

Cited by

  1. Effects of purified alginate sponge on the regeneration of chondrocytes:in vitroandin vivo vol.26, pp.3, 2014, https://doi.org/10.1080/09205063.2014.987570