DOI QR코드

DOI QR Code

Generation of blast load time series under tunnelling

터널 굴착 발파하중 시간이력 생성

  • Received : 2014.01.06
  • Accepted : 2014.01.22
  • Published : 2014.01.29

Abstract

It is necessary to perform a dynamic analysis to numerically evaluate the effect of blasting on nearby facilities. The blast load time history, which cannot be directly measured, is most often determined from empirical equation. The load has to be adjusted to account for various factors influencing the load and the frequency, but there is not a clear guideline on how to adjust the load. In this study, a series of 2D dynamic numerical analyses that simulates a closely monitored test blasting is performed, from which the blast load that matches the measured vibrations are derived. In the analyses, it is assumed that the hole generated by the blasting is in the form of a circle, and the load was applied normally to the wall of the opening. Special attention was given in selecting the damping ratio for the ground, since it has important influence on the wave propagation and attenuation characteristics of the blast induce waves. The damping ratio was selected such that it matches favorably with the attenuation curve of the measurement. The analyses demonstrate that the empirical blast load widely used in practice highly overstimates the vibration since it does not account for the energy loss due to rock fragmentation. If the empirical load is used without proper adjustment, the numerical analysis may seriously overstimate the predicted vibration, and thus has to be reduced in the analysis.

발파가 인근 시설물에 미치는 영향을 수치적으로 규명하기 위해서는 발파하중 시간이력을 적용한 동적 해석을 수행해야 한다. 발파하중은 실측하기 어렵기에 다양한 참고문헌에서 제시된 경험적 시간이력이 일반적으로 사용된다. 경험적 폭굉압과 시간이력은 다양한 환경변수를 고려하여 보정해야 하지만 이에 대한 가이드라인이 명확하게 제시되지 않아 해석에 어려움이 있다. 본 연구에서는 시험발파를 모사하는 2차원 동적 수치해석을 수행하여 계측기록과 상응하는 경험적 발파하중 시간이력을 도출하였다. 발파로 인한 파쇄영역은 원형으로 가정하여 모델링 하였으며 발파하중을 경계벽에 수직방향으로 재하하였다. 특히, 해석 결과에 지반의 감쇠비는 큰 영향을 미칠 수 있으므로 이를 정확하게 산정해야 한다. 시험적으로 계산된 감쇠식의 기울기는 발파하중의 크기에는 영향을 받지 않으며 하중의 주파수와 지반의 감쇠비에 의해서만 결정되므로 지반 감쇠비는 발파 감쇠식에 상응하도록 결정하였다. 해석 결과, 발파하중은 암반의 파쇄에 소요되는 에너지 손실을 고려하지 않으므로 이를 보정없이 적용할 경우 발파로 인하여 유발되는 진동을 크게 과대예측하므로 이를 감소시켜야 하는 것으로 나타났다.

Keywords

References

  1. Choi, S.O., Park, E.S., Sun, W.C., Chung, S.K. (2004), "A Study on the blasting dynamic analysis using the measurement vibration waveform", Journal of Korean Society for Rock Mechanics, Vol. 14, No. 2, pp. 108-120.
  2. Hino, K. (1959), Theory and practice of blasting, Nippon Kayaku Co Ltd.
  3. Itasca Consulting Group (2008), "FLAC (Fast Lagrangian Analyses of Continua) v.6.0".
  4. Jeon, S.S., Jang, Y.W., Jung, D.H. (2007), "Estimation of blasting distance satisfying allowable peak particle velocity - Analytical & Numerical analysis approach", journal of KOSHAM, Vol. 7, No. 1, pp. 39-46.
  5. Konya, C.J., Walter, E.J. (1991), Rock blasting and overbreak control, National Highway Institute, p. 5.
  6. Kramer, S.L. (1996), Geotechnical earthquake engineering, Prentice Hall, Upper Saddle River, N.J.
  7. Kuhlemeyer, R.L., Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", Journal of Soil Mechanics & Foundations Div, Vol. 99, p. 421.
  8. Lee, I.M., Park, B.K., Park, C.W. (2004), "Probabilistic analysis of blasting loads and Blast-induced rock mass responses in tunnel excavation", Journal of Korean Geotechnical Society, Vol. 20, No. 4, pp. 89-102.
  9. Liu, Q., Tidman, P. (1995), "Estimation of the dynamic pressure around a fully loaded blast hole", Canmet/MRL technical report 95-014, Canmet/MRL expermental mine, PO Box 1300, Valda'r Quebec.
  10. Lysmer, J., Kuhlemeyer, R. (1969), "Finite element model for infinite media", Journal of Engineering Mechanics Division. ASCE, Vol. 95, pp. 859-877.
  11. Park, D., Kim, T.G., Ahn, J.K., Park, I.J. (2013), "Amplification characteristics of mountain slope", journal of KOSHAM, Vol. 13, No. 2, pp. 117-123.
  12. Shin, J.H., Moon, H.G., Chae, S.E. (2011), "Effect of blast-induced vibration on existing tunnels in soft rocks", Tunnelling and Underground Space Technology, Vol. 26, No. 1, pp. 51-61. https://doi.org/10.1016/j.tust.2010.05.004
  13. Starfield, A.M., Pugliese, J.M. (1968), "Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier, 5, pp. 65-77. https://doi.org/10.1016/0148-9062(68)90023-5
  14. Villiappan, S., Murti, V. (1984), Finite element constraints in the analysis of wave propagation problem, UNICV Report No. R-218, The University of New South Wales, School of Civil Engineering. p. 48.
  15. Yang, H.S., Lim, S.S., Kim, W.B. (2003), "Tunnel blasting design with equations obtained from borehole and crater blasting", Journal of Korean Geotechnical Society, Vol. 19, No. 5, pp. 327-333.
  16. Zerwer, A., Cascante, G., Hutchinson, J. (2002), "Parameter estimation in finite element simulations of rayleigh waves", Journal of geotechnical and geoenvironmental engineering, Vol. 128, No. 3, pp. 250-261. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(250)