References
- Abe, H., Funada, R. 2005. Review - The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA Journal 26(2): 161-174. https://doi.org/10.1163/22941932-90000108
- Abe, H., Funada, R., Imaizumi, H., Ohtani, J., Fukazawa, K. 1995. Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197(2): 418-421.
- Abe, H., Funada, R., Ohtani, J., Fukazawa, K. 1997. Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11(6): 328-332. https://doi.org/10.1007/s004680050092
- Abe, H., Ohtani, J., Fukazawa, K. 1991. FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bulletin 12(4): 431-438. https://doi.org/10.1163/22941932-90000546
- Abraham, Y., Elbaum, R. 2013. Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy. New Phytologist 197(3): 1012-1019. https://doi.org/10.1111/nph.12070
- Anagnost, S. E., Mark, R. E., Hanna, R. B. 2000. Utilization of soft-rot cavity orientation for the determination of microfibril angle. Part I. Wood and Fiber Science 32(1): 81-87.
- Anagnost, S. E., Mark, R. E., Hanna, R. B. 2002. Variation of microfibril angle within individual tracheids. Wood and Fiber Science 34(2): 337-349.
- Bergander, A., Brandstrom, J., Daniel, G., Salmen, L. 2002. Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy. Journal of Wood Science 48(4): 255-263. https://doi.org/10.1007/BF00831344
- Bergander, A., and Salmen, L. 2002. Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science 37(1):151-156. https://doi.org/10.1023/A:1013115925679
- Brandstrom, J. 2004. Microfibril angle of the S-1 cell wall layer of Norway spruce compression wood tracheids. IAWA Journal 25(4): 415-423. https://doi.org/10.1163/22941932-90000374
- Brandstrom, J., Bardage, S. L., Daniel, G., Nilsson, T. 2003. The structural organisation of the S-1 cell wall layer of Norway spruce tracheids. IAWA Journal 24(1): 27-40. https://doi.org/10.1163/22941932-90000318
- Donaldson, L. A. 1985. Critical assessment of interference microscopy as a technique for measuring lignin distribution in cell walls. New Zealand Journal of Forestry Science 15(3): 349-360.
- Donaldson, L., Frankland, A. 2004. Ultrastructure of iodine treated wood. Holzforschung 58(3): 219-225.
- Donaldson, L., Xu, P. 2005. Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees-Structure and Function 19(6): 644-653. https://doi.org/10.1007/s00468-005-0428-1
- Donaldson, L. 2008. Microfibril angle: measurement, variation and relationships - a review. IAWA Journal 29(4): 345-386. https://doi.org/10.1163/22941932-90000192
- Fengel, D., Wegener, G., 1983. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin, Germany.
- Hacke, U. G., Jansen, S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist 182(3): 675-686. https://doi.org/10.1111/j.1469-8137.2009.02783.x
- Jang, H. F., Seth, R. S. 1998. Using confocal microscopy to characterize the collapse behavior of fibers. Tappi Journal 81(5): 167-174.
- Jang, H. F., Seth, R. S., Wu, C. B., Chan, B. K. 2005. Determining the transverse dimensions of fibers in wood using confocal microscopy. Wood and Fiber Science 37(4): 615-628.
- Jansen, S., Lamy, J. B., Burlett, R., Cochard, H., Gasson, P., Delzon, S. 2012. Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant, Cell and Environment 35(6): 1109-1120. https://doi.org/10.1111/j.1365-3040.2011.02476.x
- Kasarova, S. N., Sultanova, N. G., Ivanov, C. D., Nikolov, I. D. 2007. Analysis of the dispersion of optical plastic materials. Optical Materials 29(11): 1481-1490. https://doi.org/10.1016/j.optmat.2006.07.010
- Khalili, S., Nilsson, T., Daniel, G. 2001. The use of soft rot fungi for determining the microfibrillar orientation in the S2 layer of pine tracheids. Holz Als Roh-Und Werkstoff 58(6): 439-447. https://doi.org/10.1007/s001070050458
- Kitin, P., Fujii, T., Abe, H., Takata, K. 2009. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Annals of Botany 103(7): 1145-1157. https://doi.org/10.1093/aob/mcp050
- Leney, L. 1981. A technique for measuring fibril angle using polarized-light. Wood and Fiber 13(1): 13-16.
- Maschek, D., Goodell, B., Jellison, J., Lessard, M., Militz, H. 2013. A new approach for the study of the chemical composition of bordered pit membranes: 4Pi and confocal laser scanning microscopy. American Journal of Botany 100(9): 1751-1756. https://doi.org/10.3732/ajb.1300004
- Oldenbourg, R. 1999. Polarized light microscopy of spindles. Methods in Cell Biology 61: 175-208.
- Peter, G. F., Benton, D. M., Bennett, K. 2003. A simple, direct method for measurement of microfibril angle in single fibres using differential interference contrast microscopy. Journal of Pulp and Paper Science 29(8): 274-280.
- Reis, D., Vian, B. 2004. Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. C. R. Biologies 327(9): 785-790. https://doi.org/10.1016/j.crvi.2004.04.008
- Schulte, P. J. 2012. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytologist 193(3): 721-729. https://doi.org/10.1111/j.1469-8137.2011.03986.x
- Sedighi-Gilani, M., Sunderland, H., Navi, P. 2005. Microfibril angle non-uniformities within normal and compression wood tracheids. Wood Science and Technology 39(6): 419-430. https://doi.org/10.1007/s00226-005-0022-0
- Wang, N., Liu, W., Peng, Y. 2013. Gradual transition zone between cell wall layers and its influence on wood elastic modulus. Journal of Materials Science 48(14): 5071-5084. https://doi.org/10.1007/s10853-013-7295-8
Cited by
- Investigation of Layered Structure of Fiber Cell Wall in Korean Red Pine by Confocal Reflection Microscopy vol.44, pp.2, 2014, https://doi.org/10.9729/AM.2014.44.2.61