DOI QR코드

DOI QR Code

Investigation of Bordered Pit Ultrastructure in Tracheid of Korean Red Pine (Pinus densiflora) by Confocal Reflection Microscopy

공초점반사현미경을 이용한 소나무 유연벽공의 초미세구조 연구

  • Kwon, Ohkyung (National Instrumentation Center for Environmental Management, Seoul National University)
  • 권오경 (서울대학교 농생명과학공동기기원)
  • Received : 2014.04.08
  • Accepted : 2014.05.09
  • Published : 2014.05.25

Abstract

Confocal reflection microscopy (CRM) was utilized to create 3-dimensional images of bordered pits and cell wall in the tracheid of Korean red pine (Pinus densiflora). Ultrastructures of torus, margo, and pit border were clearly observable in the CRM micrograph. Micrograph of cross-field pit revealed the connecting and supporting structure between tracheid and ray parenchyma cell. The CRM micrographs enabled to investigate detailed structures of tracheid cell wall such as S1, S2, S3 layers, transition layers between these layers, and microfibril (MF) orientation in S3 and S2 layers as well as complicated distribution of MF orientation around bordered pits. Not only concentric MF orientation of border thickening in the pit border was observed, but also changes in MF orientation from the cell wall to the border. From the experimental results, the CRM was thought to be a versatile microtechnique to investigate detailed structures of cell wall and bordered pit in the tracheid and cross-field pit between tracheid and ray parenchyma cell.

소나무의 가도관과 유연벽공의 미세구조를 연구하는데 공초점반사현미경법을 이용하여 획득한 3차원 화상을 사용하였다. 가도관 유연벽공의 토러스, 마르고, 벽공연의 미세구조가 명확하게 관찰되었으며, 교분야벽공의 미세구조로 가도관과 방사유세포 사이의 연결구조 및 방사유세포 내의 역학적 지지구조도 관찰할 수 있었다. 가도관 세포벽의 3차원 화상에서는 S1, S2, S3층과 이 층들의 사이에 있는 이행층의 존재도 확인할 수 있었다. 또한 S3층과 S2층의 마이크로 피브릴 배향의 관찰이 가능하였고, 유연벽공 주변의 복잡한 마이크로피브릴 배향 특성도 직접적으로 확인할 수 있었다. 본 연구의 결과 공초점반사현미경법은 소나무 가도관의 세포벽, 유연벽공, 교분야벽공의 미세구조를 연구하는데 유용하게 이용될 수 있는 현미경 기법으로 여겨졌다.

Keywords

References

  1. Abe, H., Funada, R. 2005. Review - The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA Journal 26(2): 161-174. https://doi.org/10.1163/22941932-90000108
  2. Abe, H., Funada, R., Imaizumi, H., Ohtani, J., Fukazawa, K. 1995. Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197(2): 418-421.
  3. Abe, H., Funada, R., Ohtani, J., Fukazawa, K. 1997. Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11(6): 328-332. https://doi.org/10.1007/s004680050092
  4. Abe, H., Ohtani, J., Fukazawa, K. 1991. FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bulletin 12(4): 431-438. https://doi.org/10.1163/22941932-90000546
  5. Abraham, Y., Elbaum, R. 2013. Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy. New Phytologist 197(3): 1012-1019. https://doi.org/10.1111/nph.12070
  6. Anagnost, S. E., Mark, R. E., Hanna, R. B. 2000. Utilization of soft-rot cavity orientation for the determination of microfibril angle. Part I. Wood and Fiber Science 32(1): 81-87.
  7. Anagnost, S. E., Mark, R. E., Hanna, R. B. 2002. Variation of microfibril angle within individual tracheids. Wood and Fiber Science 34(2): 337-349.
  8. Bergander, A., Brandstrom, J., Daniel, G., Salmen, L. 2002. Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy. Journal of Wood Science 48(4): 255-263. https://doi.org/10.1007/BF00831344
  9. Bergander, A., and Salmen, L. 2002. Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science 37(1):151-156. https://doi.org/10.1023/A:1013115925679
  10. Brandstrom, J. 2004. Microfibril angle of the S-1 cell wall layer of Norway spruce compression wood tracheids. IAWA Journal 25(4): 415-423. https://doi.org/10.1163/22941932-90000374
  11. Brandstrom, J., Bardage, S. L., Daniel, G., Nilsson, T. 2003. The structural organisation of the S-1 cell wall layer of Norway spruce tracheids. IAWA Journal 24(1): 27-40. https://doi.org/10.1163/22941932-90000318
  12. Donaldson, L. A. 1985. Critical assessment of interference microscopy as a technique for measuring lignin distribution in cell walls. New Zealand Journal of Forestry Science 15(3): 349-360.
  13. Donaldson, L., Frankland, A. 2004. Ultrastructure of iodine treated wood. Holzforschung 58(3): 219-225.
  14. Donaldson, L., Xu, P. 2005. Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees-Structure and Function 19(6): 644-653. https://doi.org/10.1007/s00468-005-0428-1
  15. Donaldson, L. 2008. Microfibril angle: measurement, variation and relationships - a review. IAWA Journal 29(4): 345-386. https://doi.org/10.1163/22941932-90000192
  16. Fengel, D., Wegener, G., 1983. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin, Germany.
  17. Hacke, U. G., Jansen, S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist 182(3): 675-686. https://doi.org/10.1111/j.1469-8137.2009.02783.x
  18. Jang, H. F., Seth, R. S. 1998. Using confocal microscopy to characterize the collapse behavior of fibers. Tappi Journal 81(5): 167-174.
  19. Jang, H. F., Seth, R. S., Wu, C. B., Chan, B. K. 2005. Determining the transverse dimensions of fibers in wood using confocal microscopy. Wood and Fiber Science 37(4): 615-628.
  20. Jansen, S., Lamy, J. B., Burlett, R., Cochard, H., Gasson, P., Delzon, S. 2012. Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant, Cell and Environment 35(6): 1109-1120. https://doi.org/10.1111/j.1365-3040.2011.02476.x
  21. Kasarova, S. N., Sultanova, N. G., Ivanov, C. D., Nikolov, I. D. 2007. Analysis of the dispersion of optical plastic materials. Optical Materials 29(11): 1481-1490. https://doi.org/10.1016/j.optmat.2006.07.010
  22. Khalili, S., Nilsson, T., Daniel, G. 2001. The use of soft rot fungi for determining the microfibrillar orientation in the S2 layer of pine tracheids. Holz Als Roh-Und Werkstoff 58(6): 439-447. https://doi.org/10.1007/s001070050458
  23. Kitin, P., Fujii, T., Abe, H., Takata, K. 2009. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Annals of Botany 103(7): 1145-1157. https://doi.org/10.1093/aob/mcp050
  24. Leney, L. 1981. A technique for measuring fibril angle using polarized-light. Wood and Fiber 13(1): 13-16.
  25. Maschek, D., Goodell, B., Jellison, J., Lessard, M., Militz, H. 2013. A new approach for the study of the chemical composition of bordered pit membranes: 4Pi and confocal laser scanning microscopy. American Journal of Botany 100(9): 1751-1756. https://doi.org/10.3732/ajb.1300004
  26. Oldenbourg, R. 1999. Polarized light microscopy of spindles. Methods in Cell Biology 61: 175-208.
  27. Peter, G. F., Benton, D. M., Bennett, K. 2003. A simple, direct method for measurement of microfibril angle in single fibres using differential interference contrast microscopy. Journal of Pulp and Paper Science 29(8): 274-280.
  28. Reis, D., Vian, B. 2004. Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. C. R. Biologies 327(9): 785-790. https://doi.org/10.1016/j.crvi.2004.04.008
  29. Schulte, P. J. 2012. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytologist 193(3): 721-729. https://doi.org/10.1111/j.1469-8137.2011.03986.x
  30. Sedighi-Gilani, M., Sunderland, H., Navi, P. 2005. Microfibril angle non-uniformities within normal and compression wood tracheids. Wood Science and Technology 39(6): 419-430. https://doi.org/10.1007/s00226-005-0022-0
  31. Wang, N., Liu, W., Peng, Y. 2013. Gradual transition zone between cell wall layers and its influence on wood elastic modulus. Journal of Materials Science 48(14): 5071-5084. https://doi.org/10.1007/s10853-013-7295-8

Cited by

  1. Investigation of Layered Structure of Fiber Cell Wall in Korean Red Pine by Confocal Reflection Microscopy vol.44, pp.2, 2014, https://doi.org/10.9729/AM.2014.44.2.61