DOI QR코드

DOI QR Code

Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics

지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석

  • Kim, Jin-Young (Department of Civil Engineering, Chonbuk National University) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University) ;
  • Lim, Jeong-Yeul (K-water Institute, Korea Water Resources Corporation)
  • 김진영 (전북대학교 토공공학과, 방재연구센터) ;
  • 권현한 (전북대학교 토공공학과, 방재연구센터) ;
  • 임정열 (K-water 연구원)
  • Received : 2014.04.07
  • Accepted : 2014.04.23
  • Published : 2014.05.31

Abstract

This study developed a Bayesian spatial regional frequency analysis, which aimed to analyze spatial patterns of design rainfall by incorporating geographical information (e.g. latitude, longitude and altitude) and climate characteristics (e.g. annual maximum series) within a Bayesian framework. There are disadvantages to considering geographical characteristics and to increasing uncertainties associated with areal rainfall estimation on the existing regional frequency analysis. In this sense, this study estimated the parameters of Gumbel distribution which is a function of geographical and climate characteristics, and the estimated parameters were spatially interpolated to derive design rainfall over the entire Han-river watershed. The proposed Bayesian spatial regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis, and even better performance in terms of quantifying uncertainty of design rainfall and considering geographical information as a predictor.

본 연구에서는 지역특성(위도, 경도, 고도)과 기후학적 특성(연최대강우량)을 계층적 Bayesian 모형안에서 연계하여 공간적 분석이 가능한 지역빈도해석 모형을 개발하였다. 기존 지역빈도해석은 강수지점의 지리적/지형적 특성을 반영한 해석이 어려운 단점이 있으며, 지점을 기준으로 해석된 확률강수량을 유역면적강우량으로 변환 시 불확실성이 큰 단점이 있다. 이에 본 연구에서는 계층적 Bayesian 기법을 이용하여 지역특성 및 기후학적 특성이 고려된 Gumbel 확률분포형의 매개변수를 추정하였으며, 이들 매개변수들을 공간적으로 보간하여 한강유역내 모든 지점에 대해서 확률강수량을 추정할 수 있도록 하였다. 결과적으로 기존 L-모멘트 방법과 유사한 결과를 확인할 수 있었으며 확률강수량의 불확실성 정량화와 더불어 지리적/지형적 영향을 고려한 해석이 가능하였다.

Keywords

References

  1. Basist, A., Bell, G.D., and Meentemeyerm, V. (1994). "Statistical relationships between topography and precipitation patterns." Journal of Climate, Vol. 7, No. 9, pp. 1305-1315. https://doi.org/10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2
  2. Berg, A., Meyer, R., and Yu, J. (2004). "Deviance Information Criterion for Comparing Stochastic Volatility Models." Journal of Business and Economic Statistics, Vol. 22, pp. 107-120. https://doi.org/10.1198/073500103288619430
  3. Burns, J.I. (1953) "Small-scale topographic effects on precipitation distribution in San Dimas experimental forest." American Geophysical Union, Vol. 34, No. 5, pp. 761-768. https://doi.org/10.1029/TR034i005p00761
  4. Carlo, G., and Matteo, G. (2007) "A hierarchical model for the analysis of spatial rainfall extremes." Journal ofAgricultural Biological and Environmental Statistics, Vol. 12, No. 4, pp. 434-449. https://doi.org/10.1198/108571107X250193
  5. Daniel. C., Douglas, N., and Philippe, N. (2005) "Bayesian Spatial Modeling of Extreme Precipitation Return Levels." Journal of the American Statistical Association, Vol. 102, No. 479, pp. 824-840.
  6. Greenwood, J.A., Landwehr, J.M., Matalas, N.C., and Wallis, J.R. (1979) "Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form."Water Resources Research, Vol. 15, No. 5, pp. 1049-1054. https://doi.org/10.1029/WR015i005p01049
  7. Han, J.W., Kwon, H.H., and Kim, T.W. (2009). "Reliability Evaluation of Parameter Estimation Methods of Probability Density Function for Estimating Probability Rainfalls." Journal of the Korean Society of Hazard Mitigation, Vol. 9, No. 6, pp. 143-151.
  8. Hosking, J.R.M., Wallis, J.R., and Wood, E.F. (1985). "An appraisal of the regional flood frequency procedure in the UK Flood Studier Report." Hydrological Sciences Journal, Vol 30, Issue 1, pp 85-109. https://doi.org/10.1080/02626668509490973
  9. Hosking, J.R.M., and Wallis, J.R. (1986a). "Paleoflood hydrology and flood frequency analysis." Water Resources Research, Vol. 22, pp, 543-550. https://doi.org/10.1029/WR022i004p00543
  10. Hwang, S.W., Park, S.W., Jang, M.W., and Cho, Y.K. (2006). "Spatial Distribution Modeling of Daily Rainfall Using Co-kriging Method." Journal of Korea Water Resources Association, KWRA, Vol. 39, No. 8, pp. 669-676. https://doi.org/10.3741/JKWRA.2006.39.8.669
  11. Katz, R.W., Parlange, M.B., and Naveau, P. (2002). "Statistics of extremes in hydrology."Water Resources Recsearch, Vol. 25, pp. 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  12. Kim, G.S., and Kim, J.P. (2011). "Characterization of the Variability of Summer Extreme Precipitation According to the Local Features." Journal of Korean Society of Civil Engineer, KSCE, Vol. 31, No. 2B, pp. 129-146.
  13. Koh, D.K., Choo, T.H., Maeng, S.J., and Trivedi, C. (2008). "Regional Frequency Analysis for Rainfall using L-Moment." Journal of Korea Contents Association, Vol. 8, No. 3, pp. 252-263. https://doi.org/10.5392/JKCA.2008.8.3.252
  14. Kwon, H.H., Moon, Y.I., Kim, B.S., and Yoon, S.Y. (2008). "Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme." Journal ofKorean Society of Civil Engineer, KSCE, Vol. 28, No. 4B, pp. 383-392.
  15. Lee, D.J., and Heo, J.H. (2001). "Frequency Analysis of Daily Rainfall in Han River Basin Based on Regional L-moments Algorithm." Journal of Korea Water Resources Association, KWRA, Vol. 34, No. 2, pp. 119-130.
  16. Lee, J.J., and Kwon, H.H. (2011). "Analysis on Spatio- Temporal Pattern and Regionalization of Extreme Rainfall Data." Journal of Korean Society of Civil Engineer, KSCE, Vol. 31, No. 1B, pp. 13-20.
  17. Marquinez, J., Lastra, J., and Garcia, P. (2003). "Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis." Journal of Hydrology, Vol. 270, pp. 1-11. https://doi.org/10.1016/S0022-1694(02)00110-5
  18. Schermerhorn, W.C. (1967) "A determination of the effect of topography upon precipitation." American Geophysical Union, Vol. 28, pp. 285-290.
  19. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. (2002). "Bayesian Measures of Model Complexity and Fit (with discussion)." Journal of the Royal Statistical Society : Series B, Vol. 64, No. 4, pp. 583-639. https://doi.org/10.1111/1467-9868.00353
  20. Spreen, W.C. (1947). "A determination of the effect of topography upon precipitation" Trans Amer. Geophys. Union, Vol. 28, pp. 285-290. https://doi.org/10.1029/TR028i002p00285
  21. Tao, Y., Chong, Y.X., Quan, X.S., and Xi, C. (2009) "Regional flood frequency and spatial patterns analysis in the Pearl River Delta region using L-moments approach." Stochastic Environmental Research and Risk Assessment, Vol. 24, No. 2, pp. 165-182.
  22. Um, M.J., Jeong, C.S., and Lee, T.S. (2012). "The Optimal Spatial Analysis of Precipitation in the Region of Gangwon." Journal of the Korean Society of Hazard Mitigation, Vol. 12, No. 1, pp. 179-192.
  23. Woltling, G., Bouvier, C., Danloux, J., and Fritsch, J.-M. (2000). "Regionalization of extreme precipitation distribution using the principal components of the topographical environment." Journal of Hydrology, Vol. 233, pp. 86-101. https://doi.org/10.1016/S0022-1694(00)00232-8
  24. Yin, S., Li, W., Chen, D., Jeong. J.H., and Guo, W. (2011) " Diurnal vatiations of summer precipitation in the Beijing area and the possible effect of topography and urbanization." Advances in Atmospheric Sciences, Vol. 28, No. 4, pp. 725-734. https://doi.org/10.1007/s00376-010-9240-y
  25. Yoo, C.S., and Jung, K.S. (2001). "Estimation of Area Average Rainfall Amount and Its Error." Journal of Korea Water Resources Association, KWRA, Vol. 34, No. 4, pp. 317-326.
  26. Yoo, C.S., Jun, K.S., and Kim, K.W. (2004). "Estimation of Orographic Effect on Precipitation in the Han River Basin-I. Regression Analysis." Journal of Korean Society of Civil Engineer, KSCE, Vol. 24, No. 1B, pp. 33-39.
  27. Yun, H.S., Um, M.J., Cho, W.C., and Heo, J.H. (2009). "Orographic Precipitation Analysis with Regional Frequency Analysis and Multiple Linear Regression." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 6, pp. 465-480. https://doi.org/10.3741/JKWRA.2009.42.6.465

Cited by

  1. A Study on the Changes of Design Flood Quantiles based on Rainfall Quantile Estimation Methods in Han River Basin vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.73
  2. A development of rating-curve using Bayesian Multi-Segmented model vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.253
  3. Estimating design floods for ungauged basins in the geum-river basin through regional flood frequency analysis using L-moments method vol.49, pp.8, 2016, https://doi.org/10.3741/JKWRA.2016.49.8.645
  4. A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.863